Special Issue:
SPECIAL TOPIC — Phononics and phonon engineering
|
SPECIAL TOPIC—Phononics and phonon engineering |
Prev
Next
|
|
|
Scaling behavior of thermal conductivity in single-crystalline α-Fe2O3 nanowires |
Qilang Wang(王啟浪)1, Yunyu Chen(陈允玉)2, Adili Aiyiti(阿地力·艾依提)1, Minrui Zheng(郑敏锐)3, Nianbei Li(李念北)4, Xiangfan Xu(徐象繁)1 |
1 Center for Phononics and Thermal Energy Science, China-EU Joint Center for Nanophononics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; 2 The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; 3 Department of Electrical and Computer Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583; 4 Institute of Systems Science and Department of Physics, College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China |
|
|
Abstract Unveiling the thermal transport properties of various one-dimensional (1D) or quasi-1D materials like nanowires, nanotubes, and nanorods is of great importance both theoretically and experimentally. The dimension or size dependence of thermal conductivity is crucial in understanding the phonon-phonon interaction in the low-dimensional systems. In this paper, we experimentally investigate the size-dependent thermal conductivity of individual single crystalline α-Fe2O3 nanowires collaborating the suspended thermal bridge method and the focused electron-beam self-heating technique, with the sample diameter (d) ranging from 180 nm to 661 nm and length (L) changing from 4.84 μm to 20.73 μm. An empirical relationship for diameter-/length-dependent thermal conductivity is obtained, which shows an approximately linear dependence on the aspect ratio (L/(1+Cd)) at T=300 K, where C is a fitting parameter. This is related to the boundary scattering and diameter effect of α-Fe2O3 nanowires although rigorous calculations are needed to confirm the result.
|
Received: 25 March 2020
Revised: 30 April 2020
Accepted manuscript online:
|
PACS:
|
44.10.+i
|
(Heat conduction)
|
|
63.22.-m
|
(Phonons or vibrational states in low-dimensional structures and nanoscale materials)
|
|
63.20.-e
|
(Phonons in crystal lattices)
|
|
Fund: Project supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2020B010190004), the National Natural Science Foundation of China (Grant Nos. 11674245, 11775158, 11890703, and 11935010), and the Open Fund of Zhejiang Provincial Key Laboratory of Quantum Technology and Device, China (Grant No. 20190301), and the Shanghai Committee of Science and Technology in China (Grant Nos. 17142202100, 17ZR1447900, and 17ZR1432600). |
Corresponding Authors:
Nianbei Li, Nianbei Li
E-mail: nbli@hqu.edu.cn;xuxiangfan@tongji.edu.cn
|
Cite this article:
Qilang Wang(王啟浪), Yunyu Chen(陈允玉), Adili Aiyiti(阿地力·艾依提), Minrui Zheng(郑敏锐), Nianbei Li(李念北), Xiangfan Xu(徐象繁) Scaling behavior of thermal conductivity in single-crystalline α-Fe2O3 nanowires 2020 Chin. Phys. B 29 084402
|
[1] |
Bertelsen P, Goetz W, Madsen M B, Kinch K M, Hviid S F, Knudsen J M, Gunnlaugsson H P, Merrison J, Nornberg P, Squyres S W, Bell J F, 3rd, Herkenhoff K E, Gorevan S, Yen A S, Myrick T, Klingelhofer G, Rieder R and Gellert R 2004 Science 305 827
|
[2] |
Jubb A M and Allen H C 2010 Acs Appl. Mater. Inter. 2 2804
|
[3] |
Weiss W, Zscherpel D and Schlogl R 1998 Catal. Lett. 52 215
|
[4] |
Faust B C, Hoffmann M R and Bahnemann D W 1989 J. Phys. Chem. 93 6371
|
[5] |
Ohmori T, Takahashi H, Mametsuka H and Suzuki E 2000 Phys. Chem. Chem. Phys. 2 3519
|
[6] |
Comini E, Faglia G and Sberveglieri G 2001 Sensor. Actuat. B-Chem. 78 73
|
[7] |
Comini E, Guidi V, Frigeri C, Ricco I and Sberveglieri G 2001 Sensor. Actuat. B-Chem. 77 16
|
[8] |
Gupta A K and Gupta M 2005 Biomaterials 26 3995
|
[9] |
del Pino P, Munoz-Javier A, Vlaskou D, Rivera Gil P, Plank C and Parak W J 2010 Nano Lett. 10 3914
|
[10] |
Nakamura T 1977 Sol. Energy 19 467
|
[11] |
Poizot P, Laruelle S, Grugeon S, Dupont L and Tarascon J M 2000 Nature 407 496
|
[12] |
Wan X, Feng W, Wang Y, Wang H, Zhang X, Deng C and Yang N 2019 Nano Lett. 19 3387
|
[13] |
Collins P G, Bradley K, Ishigami M and Zettl A 2000 Science 287 1801
|
[14] |
Cui Y and Lieber C M 2001 Science 291 851
|
[15] |
Hong S and Myung S 2007 Nat. Nanotechnol. 2 207
|
[16] |
Chang C W, Okawa D, Majumdar A and Zettl A 2006 Science 314 1121
|
[17] |
Xie R G, Bui C T, Varghese B, Zhang Q X, Sow C H, Li B W and Thong J T L 2011 Adv. Funct. Mater. 21 1602
|
[18] |
Chan C K, Peng H, Liu G, McIlwrath K, Zhang X F, Huggins R A and Cui Y 2008 Nat. Nanotechnol. 3 31
|
[19] |
Yang N, Zhang G and Li B W 2010 Nano Today 5 85
|
[20] |
Tian B Z, Zheng X L, Kempa T J, Fang Y, Yu N F, Yu G H, Huang J L and Lieber C M 2007 Nature 449 885
|
[21] |
Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard W A 3rd and Heath J R 2008 Nature 451 168
|
[22] |
Wen X, Wang S, Ding Y, Wang Z L and Yang S 2005 J. Phys. Chem. B 109 215
|
[23] |
Lee Y C, Chueh Y L, Hsieh C H, Chang M T, Chou L J, Wang Z L, Lan Y W, Chen C D, Kurata H and Isoda S 2007 Small 3 1356
|
[24] |
Lin Y, Sun F Q, Yuan X Y, Geng B Y and Zhang L D 2004 App. Phys. A 78 1197
|
[25] |
Wu J J, Lee Y L, Chiang H H and Wong D K 2006 J. Phys. Chem. B 110 18108
|
[26] |
Liu L, Kou H Z, Mo W, Liu H and Wang Y 2006 J. Phys. Chem. B 110 15218
|
[27] |
Tang B, Wang G, Zhuo L, Ge J and Cui L 2006 Inorg. Chem. 45 5196
|
[28] |
Dong L, Xi Q, Zhou J, Xu X and Li B 2020 Phys. Rev. Appl. 13 034019
|
[29] |
Dong L, Xi Q, Chen D, Guo J, Nakayama T, Li Y, Liang Z, Zhou J, Xu X and Li B 2018 Natl. Sci. Rev. 5 500
|
[30] |
Shi L, Li D, Yu C, Jang W, Kim D, Yao Z, Kim P and Majumdar A 2003 J. Heat Trans. 125 881
|
[31] |
Xu X, Pereira L F, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Tinh Bui C, Xie R, Thong J T, Hong B H, Loh K P, Donadio D, Li B and Ozyilmaz B 2014 Nat. Commun. 5 3689
|
[32] |
Kim P, Shi L, Majumdar A and McEuen P L 2001 Phys. Rev. Lett. 87 215502
|
[33] |
Guo J, Huang Y, Wu X, Wang Q, Zhou X, Xu X and Li B 2019 Phys. Status Solidi-RRL. 13 1800529
|
[34] |
Wang Q, Liang X, Liu B, Song Y, Gao G and Xu X 2020 Nanoscale 12 1138
|
[35] |
Aiyiti A, Hu S, Wang C, Xi Q, Cheng Z, Xia M, Ma Y, Wu J, Guo J, Wang Q, Zhou J, Chen J, Xu X and Li B 2018 Nanoscale 10 2727
|
[36] |
Liu D, Xie R, Yang N, Li B and Thong J T 2014 Nano Lett. 14 806
|
[37] |
Zhao Y, Liu D, Chen J, Zhu L, Belianinov A, Ovchinnikova O S, Unocic R R, Burch M J, Kim S, Hao H, Pickard D S, Li B and Thong J T L 2017 Nat. Commun. 8 15919
|
[38] |
Aiyiti A, Bai X, Wu J, Xu X and Li B 2018 Sci. Bull. 63 452
|
[39] |
Khitun A, Balandin A and Wang K L 1999 Superlattice. Microst. 26 181
|
[40] |
Li D Y, Wu Y Y, Kim P, Shi L, Yang P D and Majumdar A 2003 Appl. Phys. Lett. 83 2934
|
[41] |
Chen R, Hochbaum A I, Murphy P, Moore J, Yang P and Majumdar A 2008 Phys. Rev. Lett. 101 105501
|
[42] |
Saito K and Dhar A 2010 Phys. Rev. Lett. 104 040601
|
[43] |
Wang L, He D and Hu B 2010 Phys. Rev. Lett. 105 160601
|
[44] |
Yuldashev Sh U, Yalishev V, Cho H D and Kang T W 2016 J. Nanosci. Nanotechnol. 16 1592
|
[45] |
An M, Song Q, Yu X, Meng H, Ma D, Li R, Jin Z, Huang B and Yang N 2017 Nano Lett. 17 5805
|
[46] |
Lee V, Wu C H, Lou Z X, Lee W L and Chang C W 2017 Phys. Rev. Lett. 118 135901
|
[47] |
Yue S Y, Ouyang T and Hu M 2015 Sci. Rep. 5 15440
|
[48] |
Machida Y, Matsumoto N, Isono T, Behnia K 2020 Science 367 309
|
[49] |
Majumdar A 1993 J. Heat Trans. 115 7
|
[50] |
Hao Q, Xiao Y and Chen Q 2019 Mater. Today Phys. 10 100126
|
[51] |
Morse P M 1929 Phys. Rev. 34 57
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|