Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 084402    DOI: 10.1088/1674-1056/ab90f0
Special Issue: SPECIAL TOPIC — Phononics and phonon engineering
SPECIAL TOPIC—Phononics and phonon engineering Prev   Next  

Scaling behavior of thermal conductivity in single-crystalline α-Fe2O3 nanowires

Qilang Wang(王啟浪)1, Yunyu Chen(陈允玉)2, Adili Aiyiti(阿地力·艾依提)1, Minrui Zheng(郑敏锐)3, Nianbei Li(李念北)4, Xiangfan Xu(徐象繁)1
1 Center for Phononics and Thermal Energy Science, China-EU Joint Center for Nanophononics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China;
2 The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China;
3 Department of Electrical and Computer Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583;
4 Institute of Systems Science and Department of Physics, College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
Abstract  Unveiling the thermal transport properties of various one-dimensional (1D) or quasi-1D materials like nanowires, nanotubes, and nanorods is of great importance both theoretically and experimentally. The dimension or size dependence of thermal conductivity is crucial in understanding the phonon-phonon interaction in the low-dimensional systems. In this paper, we experimentally investigate the size-dependent thermal conductivity of individual single crystalline α-Fe2O3 nanowires collaborating the suspended thermal bridge method and the focused electron-beam self-heating technique, with the sample diameter (d) ranging from 180 nm to 661 nm and length (L) changing from 4.84 μm to 20.73 μm. An empirical relationship for diameter-/length-dependent thermal conductivity is obtained, which shows an approximately linear dependence on the aspect ratio (L/(1+Cd)) at T=300 K, where C is a fitting parameter. This is related to the boundary scattering and diameter effect of α-Fe2O3 nanowires although rigorous calculations are needed to confirm the result.
Keywords:  thermal conductivity      size-dependent      boundary scattering      nanowire  
Received:  25 March 2020      Revised:  30 April 2020      Accepted manuscript online: 
PACS:  44.10.+i (Heat conduction)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  63.20.-e (Phonons in crystal lattices)  
Fund: Project supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2020B010190004), the National Natural Science Foundation of China (Grant Nos. 11674245, 11775158, 11890703, and 11935010), and the Open Fund of Zhejiang Provincial Key Laboratory of Quantum Technology and Device, China (Grant No. 20190301), and the Shanghai Committee of Science and Technology in China (Grant Nos. 17142202100, 17ZR1447900, and 17ZR1432600).
Corresponding Authors:  Nianbei Li, Nianbei Li     E-mail:  nbli@hqu.edu.cn;xuxiangfan@tongji.edu.cn

Cite this article: 

Qilang Wang(王啟浪), Yunyu Chen(陈允玉), Adili Aiyiti(阿地力·艾依提), Minrui Zheng(郑敏锐), Nianbei Li(李念北), Xiangfan Xu(徐象繁) Scaling behavior of thermal conductivity in single-crystalline α-Fe2O3 nanowires 2020 Chin. Phys. B 29 084402

[1] Bertelsen P, Goetz W, Madsen M B, Kinch K M, Hviid S F, Knudsen J M, Gunnlaugsson H P, Merrison J, Nornberg P, Squyres S W, Bell J F, 3rd, Herkenhoff K E, Gorevan S, Yen A S, Myrick T, Klingelhofer G, Rieder R and Gellert R 2004 Science 305 827
[2] Jubb A M and Allen H C 2010 Acs Appl. Mater. Inter. 2 2804
[3] Weiss W, Zscherpel D and Schlogl R 1998 Catal. Lett. 52 215
[4] Faust B C, Hoffmann M R and Bahnemann D W 1989 J. Phys. Chem. 93 6371
[5] Ohmori T, Takahashi H, Mametsuka H and Suzuki E 2000 Phys. Chem. Chem. Phys. 2 3519
[6] Comini E, Faglia G and Sberveglieri G 2001 Sensor. Actuat. B-Chem. 78 73
[7] Comini E, Guidi V, Frigeri C, Ricco I and Sberveglieri G 2001 Sensor. Actuat. B-Chem. 77 16
[8] Gupta A K and Gupta M 2005 Biomaterials 26 3995
[9] del Pino P, Munoz-Javier A, Vlaskou D, Rivera Gil P, Plank C and Parak W J 2010 Nano Lett. 10 3914
[10] Nakamura T 1977 Sol. Energy 19 467
[11] Poizot P, Laruelle S, Grugeon S, Dupont L and Tarascon J M 2000 Nature 407 496
[12] Wan X, Feng W, Wang Y, Wang H, Zhang X, Deng C and Yang N 2019 Nano Lett. 19 3387
[13] Collins P G, Bradley K, Ishigami M and Zettl A 2000 Science 287 1801
[14] Cui Y and Lieber C M 2001 Science 291 851
[15] Hong S and Myung S 2007 Nat. Nanotechnol. 2 207
[16] Chang C W, Okawa D, Majumdar A and Zettl A 2006 Science 314 1121
[17] Xie R G, Bui C T, Varghese B, Zhang Q X, Sow C H, Li B W and Thong J T L 2011 Adv. Funct. Mater. 21 1602
[18] Chan C K, Peng H, Liu G, McIlwrath K, Zhang X F, Huggins R A and Cui Y 2008 Nat. Nanotechnol. 3 31
[19] Yang N, Zhang G and Li B W 2010 Nano Today 5 85
[20] Tian B Z, Zheng X L, Kempa T J, Fang Y, Yu N F, Yu G H, Huang J L and Lieber C M 2007 Nature 449 885
[21] Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard W A 3rd and Heath J R 2008 Nature 451 168
[22] Wen X, Wang S, Ding Y, Wang Z L and Yang S 2005 J. Phys. Chem. B 109 215
[23] Lee Y C, Chueh Y L, Hsieh C H, Chang M T, Chou L J, Wang Z L, Lan Y W, Chen C D, Kurata H and Isoda S 2007 Small 3 1356
[24] Lin Y, Sun F Q, Yuan X Y, Geng B Y and Zhang L D 2004 App. Phys. A 78 1197
[25] Wu J J, Lee Y L, Chiang H H and Wong D K 2006 J. Phys. Chem. B 110 18108
[26] Liu L, Kou H Z, Mo W, Liu H and Wang Y 2006 J. Phys. Chem. B 110 15218
[27] Tang B, Wang G, Zhuo L, Ge J and Cui L 2006 Inorg. Chem. 45 5196
[28] Dong L, Xi Q, Zhou J, Xu X and Li B 2020 Phys. Rev. Appl. 13 034019
[29] Dong L, Xi Q, Chen D, Guo J, Nakayama T, Li Y, Liang Z, Zhou J, Xu X and Li B 2018 Natl. Sci. Rev. 5 500
[30] Shi L, Li D, Yu C, Jang W, Kim D, Yao Z, Kim P and Majumdar A 2003 J. Heat Trans. 125 881
[31] Xu X, Pereira L F, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Tinh Bui C, Xie R, Thong J T, Hong B H, Loh K P, Donadio D, Li B and Ozyilmaz B 2014 Nat. Commun. 5 3689
[32] Kim P, Shi L, Majumdar A and McEuen P L 2001 Phys. Rev. Lett. 87 215502
[33] Guo J, Huang Y, Wu X, Wang Q, Zhou X, Xu X and Li B 2019 Phys. Status Solidi-RRL. 13 1800529
[34] Wang Q, Liang X, Liu B, Song Y, Gao G and Xu X 2020 Nanoscale 12 1138
[35] Aiyiti A, Hu S, Wang C, Xi Q, Cheng Z, Xia M, Ma Y, Wu J, Guo J, Wang Q, Zhou J, Chen J, Xu X and Li B 2018 Nanoscale 10 2727
[36] Liu D, Xie R, Yang N, Li B and Thong J T 2014 Nano Lett. 14 806
[37] Zhao Y, Liu D, Chen J, Zhu L, Belianinov A, Ovchinnikova O S, Unocic R R, Burch M J, Kim S, Hao H, Pickard D S, Li B and Thong J T L 2017 Nat. Commun. 8 15919
[38] Aiyiti A, Bai X, Wu J, Xu X and Li B 2018 Sci. Bull. 63 452
[39] Khitun A, Balandin A and Wang K L 1999 Superlattice. Microst. 26 181
[40] Li D Y, Wu Y Y, Kim P, Shi L, Yang P D and Majumdar A 2003 Appl. Phys. Lett. 83 2934
[41] Chen R, Hochbaum A I, Murphy P, Moore J, Yang P and Majumdar A 2008 Phys. Rev. Lett. 101 105501
[42] Saito K and Dhar A 2010 Phys. Rev. Lett. 104 040601
[43] Wang L, He D and Hu B 2010 Phys. Rev. Lett. 105 160601
[44] Yuldashev Sh U, Yalishev V, Cho H D and Kang T W 2016 J. Nanosci. Nanotechnol. 16 1592
[45] An M, Song Q, Yu X, Meng H, Ma D, Li R, Jin Z, Huang B and Yang N 2017 Nano Lett. 17 5805
[46] Lee V, Wu C H, Lou Z X, Lee W L and Chang C W 2017 Phys. Rev. Lett. 118 135901
[47] Yue S Y, Ouyang T and Hu M 2015 Sci. Rep. 5 15440
[48] Machida Y, Matsumoto N, Isono T, Behnia K 2020 Science 367 309
[49] Majumdar A 1993 J. Heat Trans. 115 7
[50] Hao Q, Xiao Y and Chen Q 2019 Mater. Today Phys. 10 100126
[51] Morse P M 1929 Phys. Rev. 34 57
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[3] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[4] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[5] Observation of size-dependent boundary effects in non-Hermitian electric circuits
Luhong Su(苏鹭红), Cui-Xian Guo(郭翠仙), Yongliang Wang(王永良), Li Li(李力), Xinhui Ruan(阮馨慧), Yanjing Du(杜燕京), Shu Chen(陈澍), and Dongning Zheng(郑东宁). Chin. Phys. B, 2023, 32(3): 038401.
[6] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[7] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[8] Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(5): 057401.
[9] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[10] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[11] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[12] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[13] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[14] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[15] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
No Suggested Reading articles found!