Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 038401    DOI: 10.1088/1674-1056/aca9c4
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Observation of size-dependent boundary effects in non-Hermitian electric circuits

Luhong Su(苏鹭红)1,2, Cui-Xian Guo(郭翠仙)1,†, Yongliang Wang(王永良)3, Li Li(李力)1,2, Xinhui Ruan(阮馨慧)1,4, Yanjing Du(杜燕京)1,5, Shu Chen(陈澍)1,6,7, and Dongning Zheng(郑东宁)1,6,8,‡
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 CAS Center for Excellence in Superconducting Electronics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
4 Department of Automation, Tsinghua University, Beijing 100084, China;
5 China University of Geosciences, Beijing 100083, China;
6 CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
7 The Yangtze River Delta Physics Research Center, Liyang 213300, China;
8 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  The non-Hermitian systems with the non-Hermitian skin effect(NHSE) are very sensitive to the imposed boundary conditions and lattice sizes, which lead to size-dependent non-Hermitian skin effects. Here, we report the experimental observation of NHSE with different boundary conditions and different lattice sizes in the unidirectional hopping model based on a circuit platform. The circuit admittance spectra and corresponding eigenstates are very sensitive to the presence of the boundary. Meanwhile, our experimental results show how the lattice sizes and boundary terms together affect the strength of NHSE. Therefore, our electric circuit provides a good platform to observe size-dependent boundary effects in non-Hermitian systems.
Keywords:  non-Hermitian      size-dependent boundary effects      circuit  
Received:  27 October 2022      Revised:  26 November 2022      Accepted manuscript online:  08 December 2022
PACS:  84.30.-r (Electronic circuits)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  03.65.Fd (Algebraic methods)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
Fund: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2017YFA0304300), the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2020B0303030001), the National Natural Science Foundation of China (Grant No. T2121001), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000).
Corresponding Authors:  Cui-Xian Guo, Dongning Zheng     E-mail:  cxguo@iphy.ac.cn;dzheng@iphy.ac.cn

Cite this article: 

Luhong Su(苏鹭红), Cui-Xian Guo(郭翠仙), Yongliang Wang(王永良), Li Li(李力), Xinhui Ruan(阮馨慧), Yanjing Du(杜燕京), Shu Chen(陈澍), and Dongning Zheng(郑东宁) Observation of size-dependent boundary effects in non-Hermitian electric circuits 2023 Chin. Phys. B 32 038401

[1] Yao S and Wang Z 2018 Phys. Rev. Lett. 121 086803
[2] Lee T E 2016 Phys. Rev. Lett. 116 133903
[3] Gong Z, Ashida Y, Kawabata K, et al. 2018 Phys. Rev. X 8 031079
[4] Longhi S 2019 Phys. Rev. Res. 1 023013
[5] Lee J, Ahn J, Zhou H, et al. 2019 Phys. Rev. Lett. 123 206404
[6] Song F, Yao S and Wang Z 2019 Phys. Rev. Lett. 123 246801
[7] Jiang H, Lang L J, Yang C, et al. 2019 Phys. Rev. B 100 054301
[8] Lee C and Thomale R 2019 Phys. Rev. B 99 201103
[9] Jin L and Song Z 2019 Phys. Rev. B 99 081103
[10] Yang Z, Zhang K, Fang C, et al. 2020 Phys. Rev. Lett. 125 226402
[11] Borgnia D S, Kruchkov A J and Slager R J 2020 Phys. Rev. Lett. 124 056802
[12] Yuce C 2020 Phys. Rev. A 102 032203
[13] Zhang K, Yang Z and Fang C 2020 Phys. Rev. Lett. 125 126402
[14] Okuma N, Kawabata K, Shiozaki K, et al. 2020 Phys. Rev. Lett. 124 086801
[15] Zhang X and Gong J 2020 Phys. Rev. B 101 045415
[16] Wu H and An J H 2020 Phys. Rev. B 102 041119
[17] Zhou L, Gu Y and Gong J 2021 Phys. Rev. B 103 L041404
[18] Yuce C 2021 Phys. Lett. A 408 127484
[19] Liu C H, Zhang K, Yang Z, et al. 2020 Phys. Rev. Res. 2 043167
[20] Li L, Lee C H, Mu S, et al. 2020 Nat. Commun 11 1
[21] Guo C X, Liu C H, Zhao X M, et al. 2021 Phys. Rev. Lett. 127 116801
[22] Li L, Lee C and Gong J 2021 Commun. Phys. 4 42
[23] Longhi S 2019 Ann. Phys. 531 1900054
[24] Li J, Harter A K, Liu J, et al. 2019 Nat. Commun. 10 855
[25] Wang S, Hou B, Lu W, et al. 2019 Nat. Commun. 10 832
[26] Wu Y, Liu W, Geng J, et al. 2019 Science 364 878
[27] Wang C, Sweeney W R, Stone A D, et al. 2021 Science 373 1261
[28] Naghiloo M, Abbasi M, Joglekar Y N and Murch K W 2019 Nat. Phys. 15 1232
[29] Zhu X, Wang H, Gupta S, et al. 2020 Phys. Rev. Res. 2 013280
[30] Sebastian W, Mark K T H, et al. 2020 Science 368 311
[31] Xiao L, Deng T S, Wang K, et al. 2020 Nature Phys. 16 1
[32] Qi L, Wang G L, Liu S, et al. 2020 Phys. Rev. Appl. 13 064016
[33] Li L, Lee C and Gong J 2020 Phys. Rev. Lett. 124 250402
[34] Ghatak A, Brandenbourger M, van Wezel J and Coulais C 2020 Proc. Natl. Acad. Sci. USA 117 29561
[35] Martin B, Xander L E L, et al. 2019 Nat. Commun. 10 4608
[36] Yakir H, Jason C, Soric A B K, et al. 2018 Nat. Electron. 1 178
[37] Liu S, Shao R, Ma S, et al. 2021 Research 2021
[38] Helbig T, Hofmann S I, et al. 2020 Nature Phys. 16 747
[39] Helbig T, Hofmann T, Lee C, et al. 2019 Phys. Rev. B 99 161114
[40] Hofmann T, Helbig T, Schindler F, et al. 2020 Phys. Rev. Res. 2 023265
[41] Ezawa M 2019 Phys. Rev. B 99 121411
[42] Zhang Z Q, Wu B L, Song J, et al. 2019 Phys. Rev. B 100 184202
[43] Albert V V, Glazman L I and Jiang L 2015 Phys. Rev. Lett. 114 173902
[44] Imhof S, Berger C, et al. 2018 Nat. Phys. 14 925
[45] Lu Y, Jia N, Su L, et al. 2019 Phys. Rev. B 99 020302
[46] Jia N, Owens C, Sommer A, et al. 2015 Phys. Rev. X 5 021031
[47] Wu F 2004 J. Phys. A Math. Gen. 37 6653
[48] Schindler J, Lin Z, Lee J M, et al. 2012 J. Phys. A Math. Theor. 45 444029
[49] Lang L J, Weng Y, Zhang Y, et al. 2021 Phys. Rev. B 103 014302
[50] Lee C H, Stefan I, Christian B, et al. 2018 Commun. Phys. 1
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Quantum speed limit of a single atom in a squeezed optical cavity mode
Ya-Jie Ma(马雅洁), Xue-Chen Gao(高雪晨), Shao-Xiong Wu(武少雄), and Chang-shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040308.
[3] Generation of microwave photon perfect W states of three coupled superconducting resonators
Xin-Ke Li(李新克), Yuan Zhou(周原), Guang-Hui Wang(王光辉), Dong-Yan Lv(吕东燕),Fazal Badshah, and Hai-Ming Huang(黄海铭). Chin. Phys. B, 2023, 32(4): 040306.
[4] Fast population transfer with a superconducting qutrit via non-Hermitian shortcut to adiabaticity
Xin-Ping Dong(董新平), Zhi-Bo Feng(冯志波), Xiao-Jing Lu(路晓静), Ming Li(李明), and Zheng-Yin Zhao(赵正印). Chin. Phys. B, 2023, 32(3): 034201.
[5] Mobility edges generated by the non-Hermitian flatband lattice
Tong Liu(刘通) and Shujie Cheng(成书杰). Chin. Phys. B, 2023, 32(2): 027102.
[6] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[7] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[8] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[9] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[10] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[11] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[12] Real non-Hermitian energy spectra without any symmetry
Boxue Zhang(张博学), Qingya Li(李青铔), Xiao Zhang(张笑), and Ching Hua Lee(李庆华). Chin. Phys. B, 2022, 31(7): 070308.
[13] Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(5): 057401.
[14] Filling up complex spectral regions through non-Hermitian disordered chains
Hui Jiang and Ching Hua Lee. Chin. Phys. B, 2022, 31(5): 050307.
[15] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
No Suggested Reading articles found!