Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 074201    DOI: 10.1088/1674-1056/ab8ac2
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Improved spatial filtering velocimetry and its application in granular flow measurement

Ping Kong(孔平)1, Bi-De Wang(王必得)2, Peng Wang(王蓬)3,1, Zivkovic V4, Jian-Qing Zhang(张建青)5
1 Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
2 School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
3 School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
4 School of Chemical Engineering and Advanced Materials, Newcastle University, NE1 7RU, United Kingdom;
5 College of Medical Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
Abstract  Spatial filtering velocimetry (SFV) has the advantages of simple structure, good stability, and wide applications. However, the traditional linear CCD-based SFV method requires an accurate angle between the direction of linear CCD and the direction of moving object, so it is not suitable for measuring a complex flow field or two-dimensional speed in a granular media. In this paper, a new extension of spatial filtering method (SFM) based on high speed array CCD camera is proposed as simple and effective technique for measuring two-dimensional speed field of granular media. In particular, we analyzed the resolution and range of array CCD-based SFV so that the reader can clarify the application scene of this method. This method has a particular advantage for using orthogonal measurement to avoid the angle measurement, which were problematic when using linear CCD to measure the movement. Finally, the end-wall effects of the granular flow in rotating drum is studied with different experimental conditions by using this improved technique.
Keywords:  spatial filtering velocimetry      array CCD      end-wall effects      resolution  
Received:  26 February 2020      Revised:  17 March 2020      Accepted manuscript online: 
PACS:  42.30.-d (Imaging and optical processing)  
  47.11.-j (Computational methods in fluid dynamics)  
  47.57.Gc (Granular flow)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11902190), the Construction Project of Shanghai Key Laboratory of Molecular Imaging (Grant No. 18DZ2260400), and the Fund from the Shanghai Municipal Education Commission, China (Class II Plateau Disciplinary Construction Program of Medical Technology of SUMHS, 2018-2020).
Corresponding Authors:  Jian-Qing Zhang     E-mail:  zhangjq@sumhs.edu.cn

Cite this article: 

Ping Kong(孔平), Bi-De Wang(王必得), Peng Wang(王蓬), Zivkovic V, Jian-Qing Zhang(张建青) Improved spatial filtering velocimetry and its application in granular flow measurement 2020 Chin. Phys. B 29 074201

[1] Jaeger H M and Nagel S R 1992 Science 255 1523
[2] Oudheusden V W B 2013 Meas. Sci. Technol. 24 032001
[3] Chung Y C, Hsiau S S, Liao H H and Ooi J Y 2010 Powder Technol. 202 151
[4] Song J, Yang H, Li R, Chen Q, Zhang Y J, Wang Y J and Kong P 2019 Powder Technol. 355 172
[5] Wang B D, Song J, Li R, Han R, Zheng G and Yang H 2020 Chin. Phys. B 29 014207
[6] Jensen A and Pedersen G K 2004 Meas. Sci. Technol. 15 2275
[7] Ferrari S and Rossi L 2008 Exp. Fluids 44 873
[8] Qiang Z D, Wang B D, Li R, Chen Q, Zheng G, Zivkovic V and Yang H 2020 Powder Technol. 360 1037
[9] Stanier S, Dijkstrab J, Leśniewskac D, Hambletond J, Whitea D and Woodeba D M 2016 Comput. Geotech. 72 100
[10] Yang H, Zhang B F, Li R, Zheng G and Zivkovic V 2017 Powder Technol. 311 439
[11] Mou S H, Yang H, Li R, Zhang G H, Sun Q C and Kong P 2019 Powder Technol. 344 1
[12] Yang H, Zhu Y H, Li R and Sun Q C 2020 Particuology 48 160
[13] Zhang Y J, Yang H, Li R, Chen Q, Sun Q C and Kong P 2019 Powder Technol. 355 333
[14] Zhu Y H, Yang H, Li R, Zhang Y J, Chen Q, Hua Y S, Sun Q C and Kong P 2020 Powder Technol. 360 882
[15] Aizu Y and Asakura T 1987 Appl. Phys. B 43 209
[16] Ator J T 1963 J. Opt. Soc. Am. 53 1416
[17] Jakobsen M L and Hanson S G 2004 Appl. Opt. 43 4643
[18] Burggraevea A, Hellings M, Remon J P, Vervaet C and Beer T D 2011 Eur. J. Pharm. Sci. 42 584
[19] Xu C L, Li J and Wang S M 2012 Flow Meas. Instrum. 26 68
[20] Han R, Zhang Y F, Li R, Chen Q, Feng J Y and Kong P 2020 Chin. Phys. B 29 024501
[21] Uddin M S, Inaba H, Itakura Y and Kasahara M 1998 Appl. Opt. 37 6234
[22] Gong J M, Yang H, Lin S H, Li R and Zivkovic V 2018 Powder Technol. 324 76
[23] Lin S H, Yang H, Li R, Zheng G and Zivkovic V 2018 Powder Technol. 338 376
[24] Schaeper M, Menn I, Frank H and Damaschke N 2008 14th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics (Portugal: Lisbon) p. 1
[25] Santomaso A, Olivi M and Canu P 2004 Chem. Eng. Sci. 59 3269
[26] Pohlman N A, Ottino J M and Lueptow R M 2006 Phys. Rev. E 74 031305
[27] Aizu Y and Asakura T 2015 Spatial filtering velocimetry: fundamentals and applications (Berlin, Heidelberg: Springer) p. 116
[28] Schaeper M and Damaschke N 2017 Meas. Sci. Technol. 28 055008
[29] Schaeper M and Damaschke N 2011 Int. Conf. DBLP 6752 303
[30] Aizu Y and Asakura T 2015 Spatial Filtering Velocimetry: Fundamentals and Applications (Springer)
[31] Papoulis A and Hoffman J G 1967 Phys. Today 20 1135
[32] Zhou J and Long X 2010 Opt. & Laser Technol. 42 1038
[33] Mellmann J 2001 Powder Technol. 1183 251
[34] Pohlman N A, Meier S W, Lueptow R M and Ottino J M 2006 J. Fluid Mech. 560 355
[35] Jop P, Forterre Y and Pouliquen O 2005 J. Fluid Mech. 541 167
[36] Alexander A, Shinbrot T and Muzzio F J 2002 Powder Technol. 126 174
[37] Félix G, Falk V and D’Ortona U 2007 Eur. Phys. J. E 22 25
[1] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[2] Quantitative ultrasound brain imaging with multiscale deconvolutional waveform inversion
Yu-Bing Li(李玉冰), Jian Wang(王建), Chang Su(苏畅), Wei-Jun Lin(林伟军), Xiu-Ming Wang(王秀明), and Yi Luo(骆毅). Chin. Phys. B, 2023, 32(1): 014303.
[3] A stopping layer concept to improve the spatial resolution of gas-electron-multiplier neutron detector
Jianjin Zhou(周建晋), Jianrong Zhou(周健荣), Xiaojuan Zhou(周晓娟), Lin Zhu(朱林), Jianqing Yang(杨建清), Guian Yang(杨桂安), Yi Zhang(张毅), Baowei Ding(丁宝卫), Bitao Hu(胡碧涛), Zhijia Sun(孙志嘉), Limin Duan(段利敏), and Yuanbo Chen(陈元柏). Chin. Phys. B, 2022, 31(5): 050702.
[4] Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(5): 057401.
[5] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[6] Near-field multiple super-resolution imaging from Mikaelian lens to generalized Maxwell's fish-eye lens
Yangyang Zhou(周杨阳) and Huanyang Chen(陈焕阳). Chin. Phys. B, 2022, 31(10): 104205.
[7] Magnetic-resonance image segmentation based on improved variable weight multi-resolution Markov random field in undecimated complex wavelet domain
Hong Fan(范虹), Yiman Sun(孙一曼), Xiaojuan Zhang(张效娟), Chengcheng Zhang(张程程), Xiangjun Li(李向军), and Yi Wang(王乙). Chin. Phys. B, 2021, 30(7): 078703.
[8] Collective excitations and quantum size effects on the surfaces of Pb(111) films: An experimental study
Yade Wang(王亚德), Zijian Lin(林子荐), Siwei Xue(薛思玮), Jiade Li(李佳德), Yi Li(李毅), Xuetao Zhu(朱学涛), and Jiandong Guo(郭建东). Chin. Phys. B, 2021, 30(7): 077308.
[9] Super-resolution imaging of low-contrast periodic nanoparticle arrays by microsphere-assisted microscopy
Qin-Fang Shi(石勤芳), Song-Lin Yang(杨松林), Yu-Rong Cao(曹玉蓉), Xiao-Qing Wang(王晓晴), Tao Chen(陈涛), and Yong-Hong Ye(叶永红). Chin. Phys. B, 2021, 30(4): 040702.
[10] High-resolution bone microstructure imaging based on ultrasonic frequency-domain full-waveform inversion
Yifang Li(李义方), Qinzhen Shi(石勤振), Ying Li(李颖), Xiaojun Song(宋小军), Chengcheng Liu(刘成成), Dean Ta(他得安), and Weiqi Wang(王威琪). Chin. Phys. B, 2021, 30(1): 014302.
[11] Nanofabrication of 50 nm zone plates through e-beam lithography with local proximity effect correction for x-ray imaging
Jingyuan Zhu(朱静远), Sichao Zhang(张思超), Shanshan Xie(谢珊珊), Chen Xu(徐晨), Lijuan Zhang(张丽娟), Xulei Tao(陶旭磊), Yuqi Ren(任玉琦), Yudan Wang(王玉丹), Biao Deng(邓彪), Renzhong Tai(邰仁忠), Yifang Chen(陈宜方). Chin. Phys. B, 2020, 29(4): 047501.
[12] Electronic structure and spatial inhomogeneity of iron-based superconductor FeS
Chengwei Wang(王成玮), Meixiao Wang(王美晓), Juan Jiang(姜娟), Haifeng Yang(杨海峰), Lexian Yang(杨乐仙), Wujun Shi(史武军), Xiaofang Lai(赖晓芳), Sung-Kwan Mo, Alexei Barinov, Binghai Yan(颜丙海), Zhi Liu(刘志), Fuqiang Huang(黄富强), Jinfeng Jia(贾金峰), Zhongkai Liu(柳仲楷), Yulin Chen(陈宇林). Chin. Phys. B, 2020, 29(4): 047401.
[13] Avalanching patterns of irregular sand particles in continual discrete flow
Ren Han(韩韧), Yu-Feng Zhang(张宇峰), Ran Li(李然), Quan Chen(陈泉), Jing-Yu Feng(冯靖禹), Ping Kong(孔平). Chin. Phys. B, 2020, 29(2): 024501.
[14] Research progress of femtosecond surface plasmon polariton
Yulong Wang(王玉龙), Bo Zhao(赵波), Changjun Min(闵长俊), Yuquan Zhang(张聿全), Jianjun Yang(杨建军), Chunlei Guo(郭春雷), Xiaocong Yuan(袁小聪). Chin. Phys. B, 2020, 29(2): 027302.
[15] Super-resolution filtered ghost imaging with compressed sensing
Shao-Ying Meng(孟少英), Wei-Wei Shi(史伟伟), Jie Ji(季杰), Jun-Jie Tao(陶俊杰), Qian Fu(付强), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2020, 29(12): 128704.
No Suggested Reading articles found!