ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Pulse generation in Yb-doped polarization-maintaining fiber laser by nonlinear polarization evolution |
Cheng-Bin Liang(梁成斌)1, Yan-Rong Song(宋晏蓉)1, Zi-Kai Dong(董自凯)1, Yun-Feng Wu(吴云峰)1, Jin-Rong Tian(田金荣)1, Run-Qin Xu(徐润亲)2 |
1 College of Applied Sciences, Beijing University of Technology, Beijing 100124, China; 2 Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract We demonstrate a self-started, long-term stable polarization-maintaining mode-locked fiber laser based on the nonlinear polarization evolution technique. A polarized beam splitter is inserted into the cavity of the linear polarization-maintaining fiber laser to facilitate self-started mode-locking. Pulses with single pulse energy of 26.9 nJ and average output power of 73.9 mW are obtained at the pump power of 600 mW. The transmission characteristics of artificial saturable absorber used in this laser are analyzed theoretically, the influence of the half-wave plate state on mode-locking is discussed, and the mode-locking range is obtained, which is well consistent with the experimental results.
|
Received: 04 March 2020
Revised: 06 April 2020
Accepted manuscript online:
|
PACS:
|
42.55.Wd
|
(Fiber lasers)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
42.81.Gs
|
(Birefringence, polarization)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61575011 and 61975003) and the Beijing Natural Science Foundation, China (Grant No. 4192015). |
Corresponding Authors:
Yan-Rong Song
E-mail: yrsong@bjut.edu.cn
|
Cite this article:
Cheng-Bin Liang(梁成斌), Yan-Rong Song(宋晏蓉), Zi-Kai Dong(董自凯), Yun-Feng Wu(吴云峰), Jin-Rong Tian(田金荣), Run-Qin Xu(徐润亲) Pulse generation in Yb-doped polarization-maintaining fiber laser by nonlinear polarization evolution 2020 Chin. Phys. B 29 074206
|
[1] |
Pan W W, Zhou J Q, Zhang L and Feng Y 2019 Opt. Express 27 17905
|
[2] |
Hänsel W, Hoogland H, Giunta M, Schmid S, Steinmetz T, Doubek R, Mayer R, Dobner S, Cleff C, Fischer M and Holzwarth R 2017 Appl. Phys. B 123 331
|
[3] |
Hao Q, Chen W H, Yang K W, Zhu X Y, Zhang Q X and Zeng H P 2016 IEEE Photon. Technol. Lett. 28 87
|
[4] |
Zhang L, Zhou J Q, Wang Z K, Gu X J and Feng Y 2014 IEEE Photon. Technol. Lett. 26 1314
|
[5] |
Sobon G, Sotor J and Abramski K M 2012 Laser Phys. Lett. 9 581
|
[6] |
Xu J, Wu S D, Liu J, Li Y P, Ren J, Yang Q H and Wang P 2014 IEEE Photon. Tech. Lett. 26 346
|
[7] |
Meng K, Zhu L Q and Luo F 2017 Chin. Phys. B. 26 014205
|
[8] |
Liu X M, Yao X K and Cui Y D 2018 Phys. Rev. Lett. 121 023905
|
[9] |
Liu X M and Pang M 2019 Laser & Photon. Rev. 13 1800333
|
[10] |
Jeong H, Choi S Y, Rotermund F, Lee K and Yeom D I 2016 J. Lightwave Technol. 34 3503
|
[11] |
Sotor J, Sobon G, Jagiello J, Lipinska L and Abramski K M 2015 J. Appl. Phys. 117 133103
|
[12] |
Shen X L, Li W X and Zeng H P 2014 Appl. Phys. Lett. 105 101109
|
[13] |
Szczepanek J, Kardas T M, Radzewicz C and Stepanenko Y 2017 Opt. Lett. 42 575
|
[14] |
Wang Y Z, Zhang L Q, Zhuo Z and Guo S Z 2016 Appl. Opt. 55 5766
|
[15] |
Zhou L, Liu Y, Xie G H, Zhang W C, Zhu Z W, Ouyang C, Gu C L and Li W X 2019 Appl. Phys. Express 12 052017
|
[16] |
Szczepanek J, Kardas T M, Radzewicz C and Stepanenko Y 2018 Opt. Express 2 13590
|
[17] |
Zhou J Q, Pan W W, Gu X J, Zhang L and Feng Y 2018 Opt. Express 26 4166
|
[18] |
Peng Z G, Cheng Z C, Bu X B, Hong C, Li H J, Shi Y H and Wang P 2018 IEEE Photon. Technol. Lett. 30 2111
|
[19] |
Szczepancek J, Kardaś T M, Piechal B and Stepanenko Y 2019 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 2019 pp. 1-2
|
[20] |
Zhu X 1994 Appl. Opt. 33 3502
|
[21] |
Xia H, Li H, Wang Z, Chen Y, Zhang X, Tang X and Liu Y 2014 Opt. Commun. 330 147
|
[22] |
Shang J, Lu X, Jiang T, Lu Y and Yu S 2018 Opt. Lett. 43 3301
|
[23] |
Xu R Q, Song Y R, Dong Z K, Li K X and Tian J R 2017 Appl. Opt. 56 1674
|
[24] |
Cheng Z C, Li H H and Wang P 2015 Opt. Express 23 5972
|
[25] |
Zhao L M, Lu C, Tam H Y, Wai P K A and Tang D Y 2009 Appl. Opt. 48 5131
|
[26] |
Tan J, Chen W M and Yu M F 2007 Opto-Electron. Eng. 34 120
|
[27] |
Nielsen C K and Keiding S R 2007 Opt. Lett. 32 1474
|
[28] |
Yang T, Jing H M and Liu D H 2006 Journal of Beijing Normal University (Natural Science) 42 477
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|