ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Generation of wideband tunable femtosecond laser based on nonlinear propagation of power-scaled mode-locked femtosecond laser pulses in photonic crystal fiber |
Zhiguo Lv(吕志国)1 and Hao Teng(滕浩)2,† |
1 School of Physical Science and Technology, Inner Mongolia Key Laboratory of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract We implement an experimental study for the generation of wideband tunable femtosecond laser with a home-made power-scaled mode-locked fiber oscillator as the pump source. By coupling the sub-100 fs mode-locked pulses into a nonlinear photonic crystal fiber (NL-PCF), the exited spectra have significant nonlinear broadening and cover a spectra range of hundreds of nm. In experiment, by reasonably optimizing the structure parameters of NL-PCF and regulating the power of the incident pulses, femtosecond laser with tuning range of 900-1290 nm is realized. The research approach promotes the development of femtosecond lasers with center wavelengths out of the traditional laser gain media toward the direction of simplicity and ease of implementation.
|
Received: 15 December 2020
Revised: 14 January 2021
Accepted manuscript online: 02 February 2021
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61805274), the Major Program of the National Natural Science Foundation of China (Grant No. 12034020), and Research Foundation of Inner Mongolia University of China (Grant No. 21200-5215108). |
Corresponding Authors:
†Corresponding author. E-mail: hteng@iphy.ac.cn
|
Cite this article:
Zhiguo Lv(吕志国) and Hao Teng(滕浩) Generation of wideband tunable femtosecond laser based on nonlinear propagation of power-scaled mode-locked femtosecond laser pulses in photonic crystal fiber 2021 Chin. Phys. B 30 044209
|
1 Strickland D and Mourou G 1985 Opt. Commun. 56 219 2 Lv Z G, Teng H, Wang L N, Wang J L and Wei Z Y 2016 Chin. Phys. B 25 094208 3 Hänsel W, Hoogland H, Giunta M, Schmid S, Steinmetz T, Doubek R, Mayer P, Dobner S, Cleff C, Fischer M, Holzwarth R 2017 Appl. Phys. B 123 41 4 Wang Z H, Fang S B, Teng H, Han H N, He X K and Wei Z Y 2018 Chin. Phys. B 27 074204 5 Kerse C, Kalaycio\vg H, Elahi P, \cCetin B, Kesim D K, Ak\ccaalan ö, Yava\cs S, A\csik M D, öktem B, Hoogland H, Holzwarth R and Ilday F ö 2016 Nature 537 84 6 Müller M, Klenke A, Steinkopff A, Stark H, Tünnermann A and Limpert J 2018 Opt. Lett. 43 6037 7 Liu J X, Wang W, Wang Z H, Lv Z G, Zhang Z Y and Wei Z Y 2015 Appl. Sci. 5 1590 8 Xiao F, Fan X H, Wang Li, Zhang D W, Wu J H, Wang X W and Zhao Z X 2020 Chin. Phys. Lett. 37 114202 9 Hüttmann G, Yao C and Endl E2005 Med. Laser App. 20 135 10 Liu X M, Svane A S, Lagsgaard J, Tu H H, Boppart S A and Turchinovich D 2016 J. Phys. D: Appl. Phys. 49 023001 11 Hoover E E and Squier J A 2013 Nat. Photon. 7 93 12 Nakai J, Ohkura M and Imoto K 2001 Nat. Biotechnol. 19 137 13 Wang P H, Xu X, Guo Z R, Jin X J and Shi G H 2019 Appl. Phys. Express 12 032008 14 Zong W J, Wu R L, Li M L, Hu Y H, Li Y J, Li J H, Rong H, Wu H T, Xu Y Y, Lu Y, Jia H B, Fan M, Zhou Z, Zhang Y F, Wang A M, Chen L Y and Chen H P 2017 Nat. Methods 14 713 15 Song J J, Meng X H, Wang Z H, Wang X Z, Tian W L, Zhu J F, Fang S B, Teng H, Wei Z Y 2019 Chin. Phys. Lett. 36 124206 16 Gottschall T, Meyer T, Schmitt M, Popp J, Limpert J and Tünnermann A 2015 Opt. Express 23 23968 17 Cristiani II, Tediosi R, Tartara L and Degiorgio V 2004 Opt. Express 12 124 18 Guo H Y, Hou L, Wang Y G, Sun J, Lin Q M, Bai Y and Bai J T 2019 J. Lightwave. Technol. 37 2370 19 Liu W, Chin S H, Chung H Y, Greinert R, Kärtner F X and Chang G Q 2017 Opt. Express 25 6822 20 Chung H Yu, Liu W, Cao Q, Kärtner F X and Chang G Q 2017 Opt. Express 25 15760 21 Ebner L and Zumbusch A 2019 Opt. Lett. 44 2290 22 Lv Z G, Yang Z, Li F, Li Q L, Wang Y S and Yang X J 2018 Acta Phys. Sin. 67 184205 (in Chinese) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|