ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
CsPbBr3 nanocrystal for mode-locking Tm-doped fiber laser |
Yan Zhou(周延)1, Renli Zhang(张仁栗)2, Xia Li(李夏)2, Peiwen Kuan(关珮雯)2, Dongyu He(贺冬钰)3, Jingshan Hou(侯京山)3, Yufeng Liu(刘玉峰)3, Yongzheng Fang(房永征)3, Meisong Liao(廖梅松)2 |
1 School of Science, Shanghai Institute of Technology, Shanghai 201418, China;
2 Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
3 School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China |
|
|
Abstract CsPbBr3 nanocrystal is used as the saturable absorber (SA) for mode-locking Tm-doped fiber laser in a ring fiber cavity. The modulation depth, saturable intensity, and non-saturable loss of the fabricated SA are 14.1%, 2.5 MW/cm2, and 5.9%, respectively. In the mode-locking operation, the mode-locked pulse train has a repetition rate of 16.6 MHz with pulse width of 24.2 ps. The laser wavelength is centered at 1992.9 nm with 3-dB spectrum width of 2.5 nm. The maximum output power is 110 mW with slope efficiency of 7.1%. Our experiment shows that CsPbBr3 nanocrystal can be used as an efficient SA in the 2-μm wavelength region.
|
Received: 18 March 2019
Revised: 09 June 2019
Accepted manuscript online:
|
PACS:
|
42.55.Wd
|
(Fiber lasers)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
42.70.-a
|
(Optical materials)
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2018YFB0504500), the National Natural Science Foundation of China (Grant Nos. 51472162, 51672177, and 61475171), and the Talent Introduction Research Project of Shanghai Institute of Technology, China (Grant No. YJ 2018-8). |
Corresponding Authors:
Yongzheng Fang, Yongzheng Fang
E-mail: fyz1003@sina.com;liaomeisong@siom.ac.cn
|
Cite this article:
Yan Zhou(周延), Renli Zhang(张仁栗), Xia Li(李夏), Peiwen Kuan(关珮雯), Dongyu He(贺冬钰), Jingshan Hou(侯京山), Yufeng Liu(刘玉峰), Yongzheng Fang(房永征), Meisong Liao(廖梅松) CsPbBr3 nanocrystal for mode-locking Tm-doped fiber laser 2019 Chin. Phys. B 28 094203
|
[1] |
Keller U 2003 Nature 424 831
|
[2] |
Grelu P and Akhmediev N 2012 Nat. Photon. 6 84
|
[3] |
Mourou G, Brocklesby B, Tajima T and Limpert J 2013 Nat. Photon. 7 258
|
[4] |
Lin H F, Zhang G, Zhang L Z, Lin Z B, Pirzio F, Agnesi A, Petrov V and Chen W D 2017 Opt. Mater. Express 7 3791
|
[5] |
Li W S, Zhu C H, Rong X F, Wu J J, Xu H Y, Wang F Q, Luo Z C and Cai Z P 2018 J. Lightwave Technol. 36 2694
|
[6] |
Liu X M, Han D D, Sun Z P, Zeng C, Lu H, Mao D, Cui Y D and Wang F Q 2013 Sci. Rep. 3 2718
|
[7] |
Liu X M, Yao X K and Cui Y D 2018 Phys. Rev. Lett. 121 023905
|
[8] |
Liu X M and Cui Y D 2019 Adv. Photon. 1 016003
|
[9] |
Sun Z P, Hasan T, Torrisi F, Popa D, Privitera G, Wang F Q, Bonaccorso F, Basko D M and Ferrari A C 2010 ACS Nano 4 803
|
[10] |
Luo Z C, Liu M, Liu H, Zheng X W, Luo A P, Zhao C J, Zhang H, Wen S C and Xu W C 2013 Opt. Lett. 38 5212
|
[11] |
Lee J and Lee J H 2018 Chin. Phys. B 27 094219
|
[12] |
Zhang H, Lu S B, Zheng J, Du J, Wen S C, Tang D Y and Loh K P 2014 Opt. Express 22 7249
|
[13] |
Kadir N A A, Ismail E I, Latiff A A, Ahmad H, Arof H and Harun S W 2017 Chin. Phys. Lett. 34 014202
|
[14] |
Mao D, Cui X Q, Gan X T, Li M K, Zhang W D, Lu H and Zhao J L 2018 IEEE J. Sel. Top. Quantum Electron. 24 1100406
|
[15] |
Liu M L, Ouyang Y Y, Hou H R, Lei M, Liu W J and Wei Z Y 2018 Chin. Phys. B 27 084211
|
[16] |
Luo Z C, Liu M, Luo A P and Xu W C 2018 Chin. Phys. B 27 094215
|
[17] |
Zhang R L, Wang J, Zhang X Y, Lin J T, Li X, Kuan P W, Zhou Y, Liao M S and Gao W Q 2019 Chin. Phys. B 28 014207
|
[18] |
Lu S B, Miao L L, Guo Z N, Qi X, Zhao C J, Zhang H, Wen S C, Tang D Y and Fan D Y 2015 Opt. Express 23 11183
|
[19] |
Liu M, Jiang X F, Yan Y R, Wang X D, Luo A P, Xu W C and Luo Z C 2018 Opt. Commun. 406 85
|
[20] |
Luo H Y, Tian X L, Gao Y, Wei R F, Li J F, Qiu J R and Liu Y 2018 Photon. Res. 6 900
|
[21] |
Guo B, Wang S H, Wu Z X, Wang Z X, Wang D H, Huang H, Zhang F, Ge Y Q and Zhang H 2018 Opt. Express 26 22750
|
[22] |
Luo H Y, Kang Z, Gao Y, Peng H L, Li J F, Qin G S and Liu Y 2019 Opt. Express 27 4886
|
[23] |
Yang L L, Kang Z, Huang B, Li J, Miao L L, Tang P H, Zhao C J, Qin G S and Wen S C 2018 Opt. Lett. 43 5459
|
[24] |
Zhang H N and Liu J 2016 Opt. Lett. 41 1150
|
[25] |
Zhou Y, Zhao M, Wang S W, Hu C X, Wang Y, Yan S, Li Y, Xu J Q, Tang Y L, Gao L F, Wang Q and Zhang H L 2016 Opt. Lett. 41 1221
|
[26] |
Zhou Y, Hu Z P, Li Y, Xu J Q, Tang X S and Tang Y L 2016 Appl. Phys. Lett. 108 261108
|
[27] |
Muhammad A R, Ahmad M T, Zakaria R, Rahim H R A, Yusoff S F A Z, Hamdan K S, Yusof H H M, Arof H and Harun S W 2017 Chin. Phys. Lett. 34 034205
|
[28] |
Aziz N A, Latiff A A, Lokman M Q, Hanafi E and Harun S W 2017 Chin. Phys. Lett. 34 044202
|
[29] |
Fu S G, Ouyang X Y, Li J J and Liu X J 2017 Chin. Phys. Lett. 34 044203
|
[30] |
Lv R D, Li L, Wang Y G, Chen Z D, Liu S C, Wang X, Wang J and Li Y F 2018 Chin. Phys. B 27 114214
|
[31] |
Sun Y J, Tu C Y, You Z Y, Liao J S, Wang Y Q and Xu J L 2018 Opt. Mater. Express 8 165
|
[32] |
Ming N, Tao S N, Yang W Q, Chen Q Y, Sun R Y, Wang C, Wang S Y, Man B Y and Zhang H N 2018 Opt. Express 26 9017
|
[33] |
Liu W J, Zhu Y N, Liu M L, Wen B, Fang S B, Teng H, Lei M, Liu L M and Wei Z Y 2018 Photon. Res. 6 220
|
[34] |
Wang Y, Li X M, Song J Z, Xiao L, Zeng H B and Sun H D 2015 Adv. Mater. 27 7101
|
[35] |
Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A and Kovalenko M V 2015 Nano Lett. 15 3692
|
[36] |
Wang Y, Li X M, Zhao X, Xiao L, Zeng H B and Sun H D 2016 Nano Lett. 16 448
|
[37] |
Krishnakanth K N, Seth S, Samanta A and Rao S V 2018 Opt. Lett. 43 603
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|