ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Tunable second harmonic generation from a Kerr-lens mode-locked Yb: YCa4O(BO3)3 femtosecond laser |
Zi-Ye Gao(高子叶)1,2,5, Jiang-Feng Zhu(朱江峰)2, Zheng-Mao Wu(吴正茂)1,5, Zhi-Yi Wei(魏志义)3, Hao-Hai Yu(于浩海)4, Huai-Jin Zhang(张怀金)4, Ji-Yang Wang(王继扬)4 |
1 School of Physical Science and Technology, Southwest University, Chongqing 400715, China;
2 School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China;
3 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
4 State Key Laboratory of Crystal Material and Institute for Crystal Material, Shandong University, Ji'nan 250100, China;
5 School of Mathematics and Statistics, Southwest University, Chongqing 400715, China |
|
|
Abstract We experimentally demonstrated a diode-pumped Kerr-lens mode-locked femtosecond (fs) laser with a self-frequency doubling Yb:YCa4O(BO3)3 crystal. Sub-40 fs laser pulses were directly generated from the oscillator without extracavity compression. The central wavelength was tunable from 1039 nm to 1049 nm with a typical bandwidth of 35 nm and an average output power of 53 mW. For the first time, a self-frequency doubled second harmonic green laser with tunable range from 519 nm to 525 nm was observed.
|
Received: 31 August 2016
Revised: 29 November 2016
Accepted manuscript online:
|
PACS:
|
42.55.Rz
|
(Doped-insulator lasers and other solid state lasers)
|
|
42.55.Xi
|
(Diode-pumped lasers)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
42.65.Hw
|
(Phase conjugation; photorefractive and Kerr effects)
|
|
Fund: Project supported by the National Major Scientific Instruments Development Project of China (Grant No. 2012YQ120047), the National Natural Science Foundation of China (Grant No. 61205130), and the Doctor Fund from Southwest University, China (Grant No. SWU110645). |
Corresponding Authors:
Zheng-Mao Wu, Zhi-Yi Wei
E-mail: zmwu@swu.edu.cn;zywei@iphy.ac.cn
|
Cite this article:
Zi-Ye Gao(高子叶), Jiang-Feng Zhu(朱江峰), Zheng-Mao Wu(吴正茂), Zhi-Yi Wei(魏志义), Hao-Hai Yu(于浩海), Huai-Jin Zhang(张怀金), Ji-Yang Wang(王继扬) Tunable second harmonic generation from a Kerr-lens mode-locked Yb: YCa4O(BO3)3 femtosecond laser 2017 Chin. Phys. B 26 044202
|
[1] |
Giesen A, Hugel H, Voss A, Wittig K, Brauch U and Opower H 1994 Appl. Phys. B 58 365
|
[2] |
Krupke W F 2000 IEEE J. Sel. Top. Quantum Electron. 6 1287
|
[3] |
Keller U 2010 Appl. Phys. B 100 15
|
[4] |
Keller U, Knox W H and Roskos H 1990 Opt. Lett. 15 1377
|
[5] |
Keller U, Miller D A B, Boyd G D, Chiu T H, Ferguson J F and Asom M T 1992 Opt. Lett. 17 505
|
[6] |
Keller U, Weingarten K J, Kärtner F X, Kopf D, Braun B, Jung I D, Fluck R, Hönninger C, Matuschek N and Aus der Au J 1996 IEEE J. Sel. Top. Quantum Electron. 2 435
|
[7] |
Spence D E, Kean P N and Sibbett W 1991 Opt. Lett. 16 42
|
[8] |
Asaki M T, Huang C P, Garvey D, Zhou J, Kapteyn H C and Murnane M M 1993 Opt. Lett. 18 977
|
[9] |
Szipocs R, Ferencz K, Spielmann C and Krausz F 1994 Opt. Lett. 19 201
|
[10] |
Zaouter Y, Didierjean J, Balembois F, Lucas Leclin G, Druon F and Georges P 2006 Opt. Lett. 31 119
|
[11] |
Uemura S and Torizuka K 2011 Jpn. J. Appl. Phys. 50 010201
|
[12] |
Agnesi A, Greborio A, Pirzio F, Reali G, Aus der Au J and Guandalini A 2012 Opt. Express 20 10077
|
[13] |
Sévillano P, Georges P, Druon F, Descamps D and Cormier E 2014 Opt. Lett. 39 6001
|
[14] |
Pirzio F, Di Dio Cafiso S D, Kemnizer M, Guandalini A, Kienle F, Veronesi S, Tonelli M, Aus der Au J and Agnesi A 2015 Opt. Express 23 9790
|
[15] |
Gao Z, Zhu J, Wang J, Wei Z, Dong X, Zheng L, Su L and Xu J 2015 Photon. Res. 3 335
|
[16] |
Haumesser P H, Gaume R, Viana B and Vivien D 2002 J. Opt. Soc. Am. B 19 2365
|
[17] |
Kränkel C, Peters R, Petermann K, Loiseasu P, Aka G and Huber G 2009 J. Opt. Soc. Am. B 26 1310
|
[18] |
Zhang H, Meng X, Wang P, Zhu L, Liu X, Cheng R, Dawes J, Dekker P, Zhang S and Sun L 1999 Appl. Phys. B 68 1147
|
[19] |
Liu J, Han W, Zhang H, Wang J and Petrov V 2008 Appl. Phys. B 91 329
|
[20] |
Gao Z, Zhu J, Tian W, Wang J, Wang Q, Zhang Z, Wei Z, Yu H, Zhang H and Wang J 2014 Chin. Phys. B 23 054207
|
[21] |
Valentine G J, Kemp A J, Birkin D J L, Burns, Balembois F, Georges P, Bernas H, Aron A, Aka G, Sibbett W, Brun A, Dawson M D and Bente E 2000 Electron. Lett. 36 1621
|
[22] |
Yoshida A, Schmidt A, Zhang H, Wang J, Liu J, Fiebig C, Paschke K, Erbert G, Petrov V and Griebner U 2010 Opt. Express 18 24325
|
[23] |
Yoshida A, Schmidt A, Petrov V, Fiebig C, Erbert G, Liu J, Zhang H, Wang J and Griebner U 2011 Opt. Lett. 36 4425
|
[24] |
Gao Z, Zhu J, Tian W, Wang J, Zhang Z, Wei Z, Yu H, Zhang H and Wang J 2014 Opt. Lett. 39 5870
|
[25] |
Heckl O H, Kränkel C, Baer C R E, Saraceno C J, Südmeyer T, Petermann K, Huber G and Keller U 2010 Opt. Express 18 19201
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|