Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 074205    DOI: 10.1088/1674-1056/ab8ac5
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

575-fs passively mode-locked Yb:CaF2 ceramic laser

Cong Wang(王聪)1,2, Qian-Qian Hao(郝倩倩)1,2, Wei-Wei Li(李威威)3, Hai-Jun Huang(黄海军)4, Shao-Zhao Wang(王绍钊)3, Da-Peng Jiang(姜大朋)5,6, Jie Liu(刘杰)1,2, Bing-Chu Mei(梅炳初)4, Liang-Bi Su(苏良碧)5,6
1 Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China;
2 Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China;
3 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;
4 School of Science, Wuhan University of Technology, Wuhan 430070, China;
5 Synthetic Single Crystal Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, China;
6 Key Laboratory of Transparent and Opto-functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, China
Abstract  A Yb-doped CaF2 transparent ceramics was successfully fabricated by the hot-pressed method and its laser characteristics were studied. A broad tuning performance and mode-locked laser operation were demonstrated in this ceramics for the first time, to our best knowledge. A 60-nm continuous-wavelength tunable laser from 1019 nm to 1079 nm was obtained with a birefringent filter. By employing a semiconductor saturable absorber mirror without additional dispersion compensation elements, a continuous-wave mode-locked laser with pulse duration as short as 575 fs was delivered, at a central wavelength of 1048.5 nm. The oscillator is operated under a repetition rate of 55 MHz. These results indicate that the Yb:CaF2 transparent ceramics is an ideal candidate for the development of ultrafast lasers in the near-infrared regime.
Keywords:  mode-locking      tunable      transparent ceramics      solid-state lasers  
Received:  01 March 2020      Revised:  21 March 2020      Accepted manuscript online: 
PACS:  42.55.-f (Lasers)  
  42.55.Xi (Diode-pumped lasers)  
  42.60.Fc (Modulation, tuning, and mode locking)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974220, 61635012, and 51902234).
Corresponding Authors:  Wei-Wei Li, Jie Liu     E-mail:  leeww0229@163.com;jieliu@sdnu.edu.cn

Cite this article: 

Cong Wang(王聪), Qian-Qian Hao(郝倩倩), Wei-Wei Li(李威威), Hai-Jun Huang(黄海军), Shao-Zhao Wang(王绍钊), Da-Peng Jiang(姜大朋), Jie Liu(刘杰), Bing-Chu Mei(梅炳初), Liang-Bi Su(苏良碧) 575-fs passively mode-locked Yb:CaF2 ceramic laser 2020 Chin. Phys. B 29 074205

[1] Krupa K, Nithyanandan K, Andral U, Tchofo-Dinda P and Grelu P 2017 Phys. Rev. Lett. 118 243901
[2] Zhou Y, Zhang R, Li X, Kuan P, He D, Hou J, Liu Y, Fang Y and Liao M 2019 Chin. Phys. B 28 094203
[3] Sun R, Chen C, Ling W J, Zhang Y N, Kang C P and Xu Q 2019 Acta Phys. Sin. 68 104207 (in Chinese)
[4] Li N, Huang J, Xu B, Cai Y, Lu J, Zhan L, Luo Z, Xu H, Cai Z and Cai W 2019 Photon. Res. 7 1209
[5] Liu H, Wang G, Yang K, Kang R, Tian W, Zhang D, Zhu J, Han H and Wei Z 2019 Chin. Phys. B 28 094213
[6] Druon F, Ricaud S, Papadopoulos D N, Pellegrina A, Camy P, Doualan J L, Moncorgé R, Courjaud A, Mottay E and Georges P 2011 Opt. Mater. Express 1 489
[7] Peng Y, Wang Z, Li D, Zhu J and Wei Z 2016 Chin. Phys. B 25 054205
[8] Liu X and Pang M 2019 Laser Photon. Rev. 13 1800333
[9] Hu Q, Zhang X, Liu Z, Li P, Li M, Cong Z, Qin Z and Chen X 2019 Opt. Laser Technol. 119 105639
[10] Su X C, Wang Y R, He J L, Zhao R W, Zhang P X, Hang Y, Hou J, Zhang B T and Zhao S 2015 Appl. Opt. 54 7120
[11] Gao Z Y, Zhu J F, Wu Z M, Wei Z Y, Yu H H, Zhang H J and Wang J Y 2017 Chin. Phys. B 26 044202
[12] Qin Z, Xie G, Ma J, Ge W, Yuan P, Qian L, Su L, Jiang D, Ma F and Zhang Q 2014 Opt. Lett. 39 1737
[13] Zhu J, Wei L, Tian W, Liu J, Wang Z, Su L, Xu J and Wei Z 2016 Laser Phys. Lett. 13 055804
[14] Wang H, Zhu J, Gao Z, Yu Y, Liu K, Wang J, Wei Z, Liu J, Jiang D and Ma F 2016 Opt. Mater. Express 6 2184
[15] Zhang F, Zhang H N, Liu D H, Liu J, Ma F K, Jiang D P, Pang S Y, Su L B and Xu J 2017 Chin. Phys. B 26 024205
[16] Hao Q, Pang S, Liu J and Su L 2018 Appl. Opt. 57 6491
[17] Ma F, Jiang D, Zhang Z, Tian X, Wu Q, Wang J, Qian X, Liu Y and Su L 2019 Opt. Mater. Express 9 4256
[18] Liu J, Zhang C, Zhang Z, Wang J, Fan X, Liu J and Su L 2019 Opt. Lett. 44 134
[19] Wu Y, Zou Z, Wang C, Liu J, Zheng L and Su L 2019 IEEE J. Sel. Top. Quantum Electron. 25 1100405
[20] Zhang F, Zhu H, Liu J, He Y, Jiang D, Tang F and Su L 2016 Appl. Opt. 55 8359
[21] Li C, Liu J, Su L, Jiang D, Qian X and Xu J 2015 Appl. Opt. 54 9509
[22] Pirzio F, Cafiso S D D D, Kemnitzer M, Kienle F, Guandalini A, der Au J A and Agnesi A 2015 J. Opt. Soc. Am. B 32 2321
[23] Friebel F, Druon F, Boudeile J, Papadopoulos D N, Hanna M, Georges P, Camy P, Doualan J L, Benayad A and Moncorgé R 2009 Opt. Lett. 34 1474
[24] Lucca A, Debourg G, Jacquemet M, Druon F, Balembois F, Georges P, Camy P, Doualan J L and Moncorgé R 2004 Opt. Lett. 29 2767
[25] Wu Y, Li J, Pan Y, Guo J, Jiang B, Xu Y and Xu J 2007 J. Am. Ceram. Soc. 90 3334
[26] Sun Z, Mei B, Li W, Liu Z and Su L 2016 J. Am. Ceram. Soc. 99 4039
[27] Kaminskii A A 2007 Laser Photon. Rev. 1 93
[28] Ikesue A and Aung Y L 2008 Nat. Photon. 2 721
[29] Hatch S, Parsons W and Weagley R 1964 Appl. Phys. Lett. 5 153
[30] Aubry P, Bensalah A, Gredin P, Patriarche G, Vivien D and Mortier M 2009 Opt. Mater. 31 750
[31] Akchurin M S, Basiev T T, Demidenko A A, Doroshenko M E, Fedorov P P, Garibin E A, Gusev P E, Kuznetsov S V, Krutov M A, Mironov I A, Osiko V V and Popov P A 2013 Opt. Mater. 35 444
[32] Sarthou J, Aballéa P, Patriarche G, Serier-Brault H, Suganuma A, Gredin P and Mortier M 2016 J. Am. Ceram. Soc. 99 1992
[33] Lyberis A, Stevenson A J, Suganuma A, Ricaud S, Druon F, Herbst F, Vivien D, Gredin P and Mortier M 2012 Opt. Mater. 34 965
[34] Aballea P, Suganuma A, Druon F, Hostalrich J, Georges P, Gredin P and Mortier M 2015 Optica 2 288
[35] Kitajima S, Yamakado K, Shirakawa A, Ueda K I, Ezura Y and Ishizawa H 2017 Opt. Lett. 42 1724
[36] Li W, Huang H, Mei B, Song J and Xu X 2018 J. Alloys Compd. 747 359
[37] Mao Y, Zhang H, Xu L, Deng B, Xing J, Xin J and Jiang Y 2014 Chin. Phys. Lett. 31 074206
[38] Liu Y, Liu Z, Cong Z, Men S, Xia J, Rao H and Zhang S 2015 Chin. Phys. Lett. 32 124201
[1] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[2] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[3] All-fiber erbium-doped dissipative soliton laser with multimode interference based on saturable-reserve saturable hybrid optical switch
Xin Zhao(赵鑫), Renyan Wan(王仁严), Weiyan Li(李卫岩), Liang Jin(金亮), He Zhang(张贺), Yan Li(李岩), Yingtian Xu(徐英添), Linlin Shi(石琳琳), and Xiaohui Ma(马晓辉). Chin. Phys. B, 2022, 31(6): 064215.
[4] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[5] Temperature-responded tunable metalenses based on phase transition materials
Jing-Jun Wu(伍景军), Feng Tang(唐烽), Jun Ma(马骏), Bing Han(韩冰), Cong Wei(魏聪), Qing-Zhi Li(李青芝), Jun Chen(陈骏), Ning Zhang(张宁), Xin Ye(叶鑫), Wan-Guo Zheng(郑万国), and Ri-Hong Zhu(朱日宏). Chin. Phys. B, 2022, 31(5): 054216.
[6] The 266-nm ultraviolet-beam generation of all-fiberized super-large-mode-area narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate
Shun Li(李舜), Ping-Xue Li(李平雪), Min Yang(杨敏), Ke-Xin Yu(于可新), Yun-Chen Zhu(朱云晨), Xue-Yan Dong(董雪岩), and Chuan-Fei Yao(姚传飞). Chin. Phys. B, 2022, 31(3): 034207.
[7] Yb:CaF2–YF3 transparent ceramics ultrafast laser at dual gain lines
Xiao-Qin Liu(刘晓琴), Qian-Qian Hao(郝倩倩), Jie Liu(刘杰), Dan-Hua Liu(刘丹华), Wei-Wei Li(李威威), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2022, 31(11): 114205.
[8] In situ measurement on nonuniform velocity distributionin external detonation exhaust flow by analysis ofspectrum features using TDLAS
Xiao-Long Huang(黄孝龙), Ning Li(李宁), Chun-Sheng Weng(翁春生), and Yang Kang(康杨). Chin. Phys. B, 2022, 31(1): 014703.
[9] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[10] Generation of wideband tunable femtosecond laser based on nonlinear propagation of power-scaled mode-locked femtosecond laser pulses in photonic crystal fiber
Zhiguo Lv(吕志国) and Hao Teng(滕浩). Chin. Phys. B, 2021, 30(4): 044209.
[11] Analysis of relative wavelength response characterization and its effects on scanned-WMS gas sensing
Dao Zheng(郑道), Zhi-Min Peng(彭志敏), Yan-Jun Ding(丁艳军), and Yan-Jun Du(杜艳君). Chin. Phys. B, 2021, 30(4): 044210.
[12] Realization of adiabatic and diabatic CZ gates in superconducting qubits coupled with a tunable coupler
Huikai Xu(徐晖凯), Weiyang Liu(刘伟洋), Zhiyuan Li(李志远), Jiaxiu Han(韩佳秀), Jingning Zhang(张静宁), Kehuan Linghu(令狐克寰), Yongchao Li(李永超), Mo Chen(陈墨), Zhen Yang(杨真), Junhua Wang(王骏华), Teng Ma(马腾), Guangming Xue(薛光明), Yirong Jin(金贻荣), and Haifeng Yu(于海峰). Chin. Phys. B, 2021, 30(4): 044212.
[13] Design and optimization of nano-antenna for thermal ablation of liver cancer cells
Mohammad Javad Rabienejhad, Azardokht Mazaheri, and Mahdi Davoudi-Darareh. Chin. Phys. B, 2021, 30(4): 048401.
[14] Electrically-manipulable electron-momentum filter based on antiparallel asymmetric double δ-magnetic-barrier semiconductor microstructure
Ge Tang (唐鸽), Ying-Jie Qin(覃英杰), Shi-Shi Xie(谢诗诗), and Meng-Hao Sun(孙梦豪). Chin. Phys. B, 2021, 30(10): 107303.
[15] High efficiency sub-nanosecond electro-optical Q-switched laser operating at kilohertz repetition frequency
Xin Zhao(赵鑫), Zheng Song(宋政), Yuan-Ji Li(李渊骥), Jin-Xia Feng(冯晋霞), Kuan-Shou Zhang(张宽收). Chin. Phys. B, 2020, 29(8): 084205.
No Suggested Reading articles found!