CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electron dynamics of active mode-locking terahertz quantum cascade laser |
Qiushi Hou(侯秋实)1,2, Chang Wang(王长)1,2,†, and Juncheng Cao(曹俊诚)1,2,‡ |
1 Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract The pulse generation from active mode-locking terahertz quantum cascade laser is studied by Maxwell-Bloch equations. It is shown that longer dephasing time will lead to multiple pulses generation from the laser. The dependence of output field on modulation length and radio-frequency parameters is obtained. In order to achieve short pulse generation, the DC bias should close to threshold value and modulation length should be shorter than 0.256 mm. The output pulse is unstable and the envelope shows many oscillations in the presence of spatial hole burning, resulting destabilization of mode-locking.
|
Received: 06 July 2020
Revised: 30 September 2020
Accepted manuscript online: 14 October 2020
|
PACS:
|
73.43.Cd
|
(Theory and modeling)
|
|
78.30.Fs
|
(III-V and II-VI semiconductors)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFF0106302), the National Natural Science Foundation of China (Grant Nos. 61975225 and 61927813), and Shanghai International Cooperation Project, China (Grant No. 18590780100). |
Corresponding Authors:
†Corresponding author. E-mail: cwang@mail.sim.ac.cn ‡Corresponding author. E-mail: jccao@mail.sim.ac.cn
|
Cite this article:
Qiushi Hou(侯秋实), Chang Wang(王长), and Juncheng Cao(曹俊诚) Electron dynamics of active mode-locking terahertz quantum cascade laser 2020 Chin. Phys. B 29 127302
|
[1] Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L and Cho A Y Science 264 5158 DOI: 10.1126/science.264.5158.5532002 [2] Freeman R J, Maysonnave J, Jukam N, Cavalie P, Maussang K, Beere H E, Ritchie D A, Mangeney J, Dhillon S S and Tignon J Appl. Phys. Lett. 101 181115 DOI: 10.1063/1.47656602012 [3] Zewail A H J. Phys. Chem. A 104 24 DOI: 10.1021/jp001460h2000 [4] Debarre D, Supatto W, Pena A M, Fabre A, Tordjmann T, Combettes L, Schanne-Klein M C and Beaurepaire E Nat. Methods 3 47 DOI: 10.1038/nmeth8132006 [5] Lee A W M, Williams B S, Kumar S, Hu Q and Reno J L IEEE Photon. Technol. Lett. 18 1415 DOI: 10.1109/LPT.2006.8772202006 [6] Scalari G, Walther C, Faist J, Beere H and Ritchie D Appl. Phys. Lett. 88 141102 DOI: 10.1063/1.21914072006 [7] Mottaghhizadeh A, Gacemi D, Laffaille P, Li H, Amanti M, Sirtori C, Saantarelli G, Hansel W, Holzwart R, Li L H, Linfield E H and Baebieri S Opt. Lett. 4 168 DOI: 10.1364/OPTICA.4.0001682017 [8] Paiella R, Capasso F, Gmachl C, Hwang H Y, Sivco D L, Hutchinson A L, Cho A Y and Liu H C Appl. Phys. Lett. 77 169 DOI: 10.1063/1.1269132000 [9] Wang C Y, Kuznetsova L, Gkortsas V M, Diehl L, Kartner F X, Belkin M A, Belyanin A, Li X, Ham D, Schneider H, Grant P, Song C Y, Haffouz S, Wasilewski Z R, Liu H C and Capasso F Opt. Express 17 12929 DOI: 10.1364/OE.17.0129292009 [10] Gkortsas V M, Wang C, Kuznetsova L, Diehl L, Gordon A, Jirauschek C, Belkin M A, Belyanin A, Capasso F and Kartner F X Opt. Express 18 1316 DOI: 10.1364/OE.18.0136162010 [11] Wanng Y R and Belyanin A Opt. Express 23 4173 DOI: 10.1364/OE.23.0041732015 [12] Barbieri S, Ravaro M, Gellie P, Santarelli G, Manquest C, Sirtori C, Khanna S P, Linfield E H and Davies A G Nat. Photon. 5 306 DOI: 10.1038/nphoton.2011.492011 [13] Wang F, Pistore V, Riesch M, Nonng H, Vigeron P B, Colombelli R, Parillaud O, Mangeney J, Tignon J, Jirauschek C and Dhillon S S Light Sci. Appl. 9 51 DOI: 10.1038/s41377-020-0288-x2020 [14] Bachmann D, Rösch M, Süess M, Beck M, Unterrainer K, Darmo J, Faist J and Scalari G Optica 3 1087 DOI: 10.1364/OPTICA.3.0010872016 [15] Piccardo M, Kazakov D, Rubin N A, Chevalier P, Wang Y R, Xie F, Lascola K, Belyanin A and Capasso F Optica 5 475 DOI: 10.1364/OPTICA.5.0004752018 [16] Forrer A, Franckie M, Stark D, Olariu T, Beck M, Faist J and Scalari G ACS Photon. 7 784 DOI: 10.1021/acsphotonics.9b016292020 [17] Luo H, Laframboise S R, Wasilewski Z R, Aers G C, Liu H C and Cao J C Appl. Phys. Lett. 90 041112 DOI: 10.1063/1.24370712007 [18] Wang F, Guo X G and Cao J C Phys. Rev. B 81 045308 DOI: 10.1103/PhysRevB.81.0453082010 [19] Dupont E, Fathololoumi S and Liu H C Phys. Rev. B 81 205311 DOI: 10.1103/PhysRevB.81.2053112010 [20] Gordon A, Wang C Y, Diehl L, Kartner F X, Belyanin A, Bour D, Corzine S, Hofler G, Liu H C, Schneider H, Maier T, Troccoli M, Faist J and Capasso F Phys. Rev. A 77 053804 DOI: 10.1103/PhysRevA.77.0538042008 [21] Wang F, Guo X G and Cao J C J. Appl. Phys. 108 083714 DOI: 10.1063/1.34988032011 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|