ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
575-fs passively mode-locked Yb:CaF2 ceramic laser |
Cong Wang(王聪)1,2, Qian-Qian Hao(郝倩倩)1,2, Wei-Wei Li(李威威)3, Hai-Jun Huang(黄海军)4, Shao-Zhao Wang(王绍钊)3, Da-Peng Jiang(姜大朋)5,6, Jie Liu(刘杰)1,2, Bing-Chu Mei(梅炳初)4, Liang-Bi Su(苏良碧)5,6 |
1 Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China; 2 Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China; 3 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; 4 School of Science, Wuhan University of Technology, Wuhan 430070, China; 5 Synthetic Single Crystal Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, China; 6 Key Laboratory of Transparent and Opto-functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, China |
|
|
Abstract A Yb-doped CaF2 transparent ceramics was successfully fabricated by the hot-pressed method and its laser characteristics were studied. A broad tuning performance and mode-locked laser operation were demonstrated in this ceramics for the first time, to our best knowledge. A 60-nm continuous-wavelength tunable laser from 1019 nm to 1079 nm was obtained with a birefringent filter. By employing a semiconductor saturable absorber mirror without additional dispersion compensation elements, a continuous-wave mode-locked laser with pulse duration as short as 575 fs was delivered, at a central wavelength of 1048.5 nm. The oscillator is operated under a repetition rate of 55 MHz. These results indicate that the Yb:CaF2 transparent ceramics is an ideal candidate for the development of ultrafast lasers in the near-infrared regime.
|
Received: 01 March 2020
Revised: 21 March 2020
Accepted manuscript online:
|
PACS:
|
42.55.-f
|
(Lasers)
|
|
42.55.Xi
|
(Diode-pumped lasers)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974220, 61635012, and 51902234). |
Corresponding Authors:
Wei-Wei Li, Jie Liu
E-mail: leeww0229@163.com;jieliu@sdnu.edu.cn
|
Cite this article:
Cong Wang(王聪), Qian-Qian Hao(郝倩倩), Wei-Wei Li(李威威), Hai-Jun Huang(黄海军), Shao-Zhao Wang(王绍钊), Da-Peng Jiang(姜大朋), Jie Liu(刘杰), Bing-Chu Mei(梅炳初), Liang-Bi Su(苏良碧) 575-fs passively mode-locked Yb:CaF2 ceramic laser 2020 Chin. Phys. B 29 074205
|
[1] |
Krupa K, Nithyanandan K, Andral U, Tchofo-Dinda P and Grelu P 2017 Phys. Rev. Lett. 118 243901
|
[2] |
Zhou Y, Zhang R, Li X, Kuan P, He D, Hou J, Liu Y, Fang Y and Liao M 2019 Chin. Phys. B 28 094203
|
[3] |
Sun R, Chen C, Ling W J, Zhang Y N, Kang C P and Xu Q 2019 Acta Phys. Sin. 68 104207 (in Chinese)
|
[4] |
Li N, Huang J, Xu B, Cai Y, Lu J, Zhan L, Luo Z, Xu H, Cai Z and Cai W 2019 Photon. Res. 7 1209
|
[5] |
Liu H, Wang G, Yang K, Kang R, Tian W, Zhang D, Zhu J, Han H and Wei Z 2019 Chin. Phys. B 28 094213
|
[6] |
Druon F, Ricaud S, Papadopoulos D N, Pellegrina A, Camy P, Doualan J L, Moncorgé R, Courjaud A, Mottay E and Georges P 2011 Opt. Mater. Express 1 489
|
[7] |
Peng Y, Wang Z, Li D, Zhu J and Wei Z 2016 Chin. Phys. B 25 054205
|
[8] |
Liu X and Pang M 2019 Laser Photon. Rev. 13 1800333
|
[9] |
Hu Q, Zhang X, Liu Z, Li P, Li M, Cong Z, Qin Z and Chen X 2019 Opt. Laser Technol. 119 105639
|
[10] |
Su X C, Wang Y R, He J L, Zhao R W, Zhang P X, Hang Y, Hou J, Zhang B T and Zhao S 2015 Appl. Opt. 54 7120
|
[11] |
Gao Z Y, Zhu J F, Wu Z M, Wei Z Y, Yu H H, Zhang H J and Wang J Y 2017 Chin. Phys. B 26 044202
|
[12] |
Qin Z, Xie G, Ma J, Ge W, Yuan P, Qian L, Su L, Jiang D, Ma F and Zhang Q 2014 Opt. Lett. 39 1737
|
[13] |
Zhu J, Wei L, Tian W, Liu J, Wang Z, Su L, Xu J and Wei Z 2016 Laser Phys. Lett. 13 055804
|
[14] |
Wang H, Zhu J, Gao Z, Yu Y, Liu K, Wang J, Wei Z, Liu J, Jiang D and Ma F 2016 Opt. Mater. Express 6 2184
|
[15] |
Zhang F, Zhang H N, Liu D H, Liu J, Ma F K, Jiang D P, Pang S Y, Su L B and Xu J 2017 Chin. Phys. B 26 024205
|
[16] |
Hao Q, Pang S, Liu J and Su L 2018 Appl. Opt. 57 6491
|
[17] |
Ma F, Jiang D, Zhang Z, Tian X, Wu Q, Wang J, Qian X, Liu Y and Su L 2019 Opt. Mater. Express 9 4256
|
[18] |
Liu J, Zhang C, Zhang Z, Wang J, Fan X, Liu J and Su L 2019 Opt. Lett. 44 134
|
[19] |
Wu Y, Zou Z, Wang C, Liu J, Zheng L and Su L 2019 IEEE J. Sel. Top. Quantum Electron. 25 1100405
|
[20] |
Zhang F, Zhu H, Liu J, He Y, Jiang D, Tang F and Su L 2016 Appl. Opt. 55 8359
|
[21] |
Li C, Liu J, Su L, Jiang D, Qian X and Xu J 2015 Appl. Opt. 54 9509
|
[22] |
Pirzio F, Cafiso S D D D, Kemnitzer M, Kienle F, Guandalini A, der Au J A and Agnesi A 2015 J. Opt. Soc. Am. B 32 2321
|
[23] |
Friebel F, Druon F, Boudeile J, Papadopoulos D N, Hanna M, Georges P, Camy P, Doualan J L, Benayad A and Moncorgé R 2009 Opt. Lett. 34 1474
|
[24] |
Lucca A, Debourg G, Jacquemet M, Druon F, Balembois F, Georges P, Camy P, Doualan J L and Moncorgé R 2004 Opt. Lett. 29 2767
|
[25] |
Wu Y, Li J, Pan Y, Guo J, Jiang B, Xu Y and Xu J 2007 J. Am. Ceram. Soc. 90 3334
|
[26] |
Sun Z, Mei B, Li W, Liu Z and Su L 2016 J. Am. Ceram. Soc. 99 4039
|
[27] |
Kaminskii A A 2007 Laser Photon. Rev. 1 93
|
[28] |
Ikesue A and Aung Y L 2008 Nat. Photon. 2 721
|
[29] |
Hatch S, Parsons W and Weagley R 1964 Appl. Phys. Lett. 5 153
|
[30] |
Aubry P, Bensalah A, Gredin P, Patriarche G, Vivien D and Mortier M 2009 Opt. Mater. 31 750
|
[31] |
Akchurin M S, Basiev T T, Demidenko A A, Doroshenko M E, Fedorov P P, Garibin E A, Gusev P E, Kuznetsov S V, Krutov M A, Mironov I A, Osiko V V and Popov P A 2013 Opt. Mater. 35 444
|
[32] |
Sarthou J, Aballéa P, Patriarche G, Serier-Brault H, Suganuma A, Gredin P and Mortier M 2016 J. Am. Ceram. Soc. 99 1992
|
[33] |
Lyberis A, Stevenson A J, Suganuma A, Ricaud S, Druon F, Herbst F, Vivien D, Gredin P and Mortier M 2012 Opt. Mater. 34 965
|
[34] |
Aballea P, Suganuma A, Druon F, Hostalrich J, Georges P, Gredin P and Mortier M 2015 Optica 2 288
|
[35] |
Kitajima S, Yamakado K, Shirakawa A, Ueda K I, Ezura Y and Ishizawa H 2017 Opt. Lett. 42 1724
|
[36] |
Li W, Huang H, Mei B, Song J and Xu X 2018 J. Alloys Compd. 747 359
|
[37] |
Mao Y, Zhang H, Xu L, Deng B, Xing J, Xin J and Jiang Y 2014 Chin. Phys. Lett. 31 074206
|
[38] |
Liu Y, Liu Z, Cong Z, Men S, Xia J, Rao H and Zhang S 2015 Chin. Phys. Lett. 32 124201
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|