Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 074207    DOI: 10.1088/1674-1056/ab8abd
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A two-mode squeezed light based on a double-pump phase-matching geometry

Xuan-Jian He(何烜坚)1, Jun Jia(贾俊)1, Gao-Feng Jiao(焦高锋)1, Li-Qing Chen(陈丽清)1, Chun-Hua Yuan(袁春华)1,3, Wei-Ping Zhang(张卫平)2,3
1 State Key Laboratory of Precision Spectroscopy, Quantum Institute for Light and Atoms, Department of Physics, East China Normal University, Shanghai 200062, China;
2 School of Physics and Astronomy, and Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China;
3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  We theoretically investigate the frequency-nondegenerate and frequency degenerate squeezed lights with a four-wave mixing process (4WM) driven by two pump fields crossing at a small angle. Different from a 4WM process driven by a single pump field, the refractive index of the corresponding probe field, np, can be converted to a value that is greater than 1 or less than 1 by an angle adjustment. In the new region with np < 1, the bandwidth of the gain is relatively large due to the slow change in the refractive index with the two-photon detuning. In this region with an exchange of the roles of the pump and probe beams, the frequency degenerate and spatial nondegenerate twin beams can be generated, which has potential application in quantum information and quantum metrology.
Keywords:  four-wave mixing      phase matching      frequency degenerate and spatial nondegenerate      metrology  
Received:  19 January 2020      Revised:  30 March 2020      Accepted manuscript online: 
PACS:  42.65.-k (Nonlinear optics)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
  42.65.Lm (Parametric down conversion and production of entangled photons)  
  06.20.-f (Metrology)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974111, 11474095, 11874152, 11604069, 91536114, 11654005, and 11234003), the Fundamental Research Funds for the Central Universities, China, the Science Foundation of Shanghai, China (Grant No. 17ZR1442800), and the National Key Research and Development Program of China (Grant No. 2016YFA0302001).
Corresponding Authors:  Li-Qing Chen, Chun-Hua Yuan     E-mail:  lqchen@phy.ecnu.edu.cn;chyuan@phy.ecnu.edu.cn

Cite this article: 

Xuan-Jian He(何烜坚), Jun Jia(贾俊), Gao-Feng Jiao(焦高锋), Li-Qing Chen(陈丽清), Chun-Hua Yuan(袁春华), Wei-Ping Zhang(张卫平) A two-mode squeezed light based on a double-pump phase-matching geometry 2020 Chin. Phys. B 29 074207

[1] Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330
[2] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222
[3] Degen C L, Reinhard F and Cappellaro P 2017 Rev. Mod. Phys. 89 035002
[4] Abbott B P, Abbott R and Abbott T D et al. (LIGO Scientific Collaboration and Virgo Collaboration) 2016 Phys. Rev. Lett. 116 061102
[5] Abbott B P, Abbott R and Abbott T D et al. (LIGO Scientific Collaboration and Virgo Collaboration) 2019 Phys. Rev. X 9 031040
[6] Yurke B, McCall S L and Klauder J R 1986 Phys. Rev. A 33 4033
[7] Jing J, Liu C, Zhou Z, Ou Z Y and Zhang W 2011 Appl. Phys. Lett. 99 011110
[8] Hudelist F, Kong J, Liu C, Jing J, Ou Z Y and Zhang W 2014 Nat. Commun. 5 3049
[9] Chen B, Qiu C, Chen S, Guo J, Chen L Q, Ou Z Y and Zhang W 2015 Phys. Rev. Lett. 115 043602
[10] Qiu C, Chen S, Chen L Q, Chen B, Guo J, Ou Z Y and Zhang W 2016 Optica 3 775
[11] Linnemann D, Strobel H, Muessel W, Schulz J, Lewis-Swan R J, Kheruntsyan K V and Oberthaler M K 2016 Phys. Rev. Lett. 117 013001
[12] Lemieux S, Manceau M, Sharapova P R, Tikhonova O V, Boyd R W, Leuchs G and Chekhova M V 2016 Phys. Rev. Lett. 117 183601
[13] Manceau M, Leuchs G, Khalili F and Chekhova M 2017 Phys. Rev. Lett. 119 223604
[14] Anderson B E, Gupta P, Schmittberger B L, Horrom T, Hermann-Avigliano C, Jones K M and Lett P D 2017 Optica 4 752
[15] Gupta P, Schmittberger B L, Anderson B E, Jones K M and Lett P D 2018 Opt. Express 26 000391
[16] Du W, Jia J, Chen J F, Ou Z Y and Zhang W 2018 Opt. Lett. 43 1051
[17] Plick W N, Dowling J P and Agarwal G S 2010 New J. Phys. 12 083014
[18] Ou Z Y 2012 Phys. Rev. A 85 023815
[19] Marino A M, Corzo Trejo N V and Lett P D 2012 Phys. Rev. A 86 023844
[20] Li D, Yuan C H, Ou Z Y and Zhang W 2014 New J. Phys. 16 073020
[21] Gabbrielli M, Pezzé L and Smerzi A 2015 Phys. Rev. Lett. 115 163002
[22] Chen Z D, Yuan C H, Ma H M, Li D, Chen L Q, Ou Z Y and Zhang W 2016 Opt. Express 24 17766
[23] Sparaciari C, Olivares S and Paris M G A 2016 Phys. Rev. A 93 023810
[24] Li D, Gard B T, Gao Y, Yuan C H, Zhang W, Lee H and Dowling J P 2016 Phys. Rev. A 94 063840
[25] Szigeti S S, Lewis-Swan R J and Haine S A 2017 Phys. Rev. Lett. 118 150401
[26] Gong Q K, Hu X L, Li D, Yuan C H, Ou Z Y and Zhang W 2017 Phys. Rev. A 96 033809
[27] Giese E, Lemieux S, Manceau M, Fickler R and Boyd R W 2017 Phys. Rev. A 96 053863
[28] Hu X L, Li D, Chen L Q, Zhang K, Zhang W and Yuan C H 2018 Phys. Rev. A 98 023803
[29] Wei C P, Hu X Y, Yu Y F and Zhang Z M 2016 Chin. Phys. B 25 040601
[30] Gong Q K, Li D, Yuan C H, Ou Z Y and Zhang W P 2017 Chin. Phys. B 26 094205
[31] Slusher R E, Hollberg L W, Yurke B, Mertz J C and Valley J F 1985 Phys. Rev. Lett. 55 2409
[32] Schnabel R 2017 Phys. Rep. 684 1
[33] Hemmer P R, Katz D P, Donoghue J, Cronin-Golomb M, Shariar M S and Kumar P 1995 Opt. Lett. 20 982
[34] Lukin M D, Hemmer P R, Löffler M and Scully M O 1998 Phys. Rev. Lett. 81 2675
[35] Zibrov A S, Lukin M D and Scully M O 1999 Phys. Rev. Lett. 83 4049
[36] Balic V, Braje D A, Kolchin P, Yin G Y and Harris S E 2005 Phys. Rev. Lett. 94 183601
[37] Kolchin P, Du S, Belthangady C, Yin G Y and Harris S E 2006 Phys. Rev. Lett. 97 113602
[38] Thompson J K, Simon J, Loh H and Vuletic V 2006 Science 313 74
[39] van der Wal C H, Eisaman M D, André A, Walsworth R L, Phillips D F, Zibrov A S and Lukin M D 2003 Science 301 196
[40] McCormick C F, Boyer V, Arimondo E and Lett P D 2007 Opt. Lett. 32 178
[41] McCormick C F, Marino A M, Boyer V and Lett P D 2008 Phys. Rev. A. 78 043816
[42] Zhang Z, Wen F, Che J, Zhang D, Li C, Zhang Y and Xiao M 2015 Sci. Rep. 5 15058
[43] Zhang D, Li C, Zhang Z, Zhang Y, Zhang Y and Xiao M 2017 Phys. Rev. A 96 043847
[44] Liu C, Jing J, Zhou Z, Pooser R C, Hudelist F, Zhou L and Zhang W 2011 Opt. Lett. 36 2979
[45] Ma R, Liu W, Qin Z, Su X, Jia X, Zhang J and Gao J 2018 Opt. Lett. 43 1243
[46] Wu M C, Schmittberger B L, Brewer N R, Speirs R W, Jones K M and Lett P D 2019 Opt. Express 27 4769
[47] Boyer V, Marino A M and Lett P D 2008 Phys. Rev. Lett. 100 143601
[48] Boyer V, Marino A M, Pooser R C and Lett P D 2008 Science 321 544
[49] Qin Z, Cao L, Wang H, Marino A M, Zhang W and Jing J 2014 Phys. Rev. Lett. 113 023602
[50] Qin Z, Cao L and Jing J 2015 Appl. Phys. Lett. 106 211104
[51] Du W, Kong J, Jia J, Ming S, Yuan C H, Chen J F, Ou Z Y, Mitchell M W, Zhang W arXiv:2004.14266
[52] Corzo N V, Marino A M, Jones K M and Lett P D 2012 Phys. Rev. Lett. 109 043602
[53] Embrey C S, Turnbull M T, Petrov P G and Boyer V 2015 Phys. Rev. X 5 031004
[54] Wang L H, Fabre C and Jing J 2017 Phys. Rev. A 95 051802
[55] Cao L, Qi J, Du J and Jing J 2017 Phys. Rev. A 95 023803
[56] Jia J, Du W, Chen J F, Yuan C H, Ou Z Y and Zhang W 2017 Opt. Lett. 42 4024
[57] Turnbull M T, Petrov P G, Embrey C S, Marino A M and Boyer V 2013 Phys. Rev. A 88 033845
[58] Corzo N, Marino A M, Jones K M and Lett P D 2011 Opt. Express 19 21358
[59] Jasperse M, Turner L D and Scholten R E 2011 Opt. Express 19 3765
[60] Knutson E M, Swaim J D, Wyllie S and Glasser R T 2018 Phys. Rev. A 98 013828
[61] Davis W V, Kauranen M, Nagasako E M, Gehr R J, Gaeta A L and Boyd R W 1995 Phys. Rev. A 51 4152
[62] Steck D A https://steck.us/alkalidata/
[63] Boyer V, McCormick C F, Arimondo E and Lett P D 2007 Phys. Rev. Lett. 99 143601
[64] Glasser R T, Vogl Ulrich and Lett Paul D 2012 Phys. Rev. Lett. 108 173902
[1] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[2] Beating standard quantum limit via two-axis magnetic susceptibility measurement
Zheng-An Wang(王正安), Yi Peng(彭益), Dapeng Yu(俞大鹏), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(4): 040309.
[3] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[4] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[5] Phase-matched second-harmonic generation in hybrid polymer-LN waveguides
Zijie Wang(王梓杰), Bodong Liu(刘伯东), Chunhua Wang(王春华), and Huakang Yu(虞华康). Chin. Phys. B, 2022, 31(10): 104208.
[6] Quantum metrology with coherent superposition of two different coded channels
Dong Xie(谢东), Chunling Xu(徐春玲), and Anmin Wang(王安民). Chin. Phys. B, 2021, 30(9): 090304.
[7] Super-sensitivity measurement of tiny Doppler frequency shifts based on parametric amplification and squeezed vacuum state
Zhi-Yuan Wang(王志远), Zi-Jing Zhang(张子静), and Yuan Zhao(赵远). Chin. Phys. B, 2021, 30(7): 074202.
[8] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[9] Multilevel atomic Ramsey interferometry for precise parameter estimations
X N Feng(冯夏宁) and L F Wei(韦联福). Chin. Phys. B, 2021, 30(12): 120601.
[10] Phase matched scanning optical parametric chirped pulse amplification based on pump beam deflection
Rong Ye(叶荣), Huining Dong(董会宁), Xianyun Wu(吴显云), and Xiang Gao(高翔). Chin. Phys. B, 2021, 30(10): 104209.
[11] Effect of dark soliton on the spectral evolution of bright soliton in a silicon-on-insulator waveguide
Zhen Liu(刘振), Wei-Guo Jia(贾维国), Hong-Yu Wang(王红玉), Yang Wang(汪洋), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(6): 064212.
[12] Coherent 420 nm laser beam generated by four-wave mixing in Rb vapor with a single continuous-wave laser
Hao Liu(刘浩), Jin-Peng Yuan(元晋鹏), Li-Rong Wang(汪丽蓉), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(4): 043203.
[13] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[14] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
[15] Quantum interferometry via a coherent state mixed with a squeezed number state
Li-Li Hou(侯丽丽), Yong-Xing Sui(眭永兴), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2019, 28(4): 044203.
No Suggested Reading articles found!