ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Generation of cavity-birefringence-dependent multi-wavelength bright-dark pulse pair in a figure-eight thulium-doped fiber laser |
Xiao-Fa Wang(王小发)†, Dong-Xin Liu(刘东鑫), Hui-Hui Han(韩慧慧), and Hong-Yang Mao(毛红炀) |
Key Laboratory of Optical Fiber Communication Technology, Chongqing Education Commission, School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China |
|
|
Abstract We experimentally demonstrated a stable multi-wavelength bright-dark pulse pair in a mode-locked thulium-doped fiber laser (TDFL). The nonlinear polarization rotation (NPR) and nonlinear optical loop mirror (NOLM) were employed in a figure-eight cavity to allow for multi-wavelength mode-locking operation. By incorporating different lengths of high birefringence polarization-maintaining fiber (PMF), the fiber laser could operate stably in a multi-wavelength emission state. Compared with the absence of the PMF, the birefringence effect caused by PMF resulted in rich multi-wavelength optical spectra and better intensity symmetry and stability of the bright-dark pulse pair.
|
Received: 27 October 2020
Revised: 03 December 2020
Accepted manuscript online: 24 December 2020
|
PACS:
|
42.55.Wd
|
(Fiber lasers)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
42.25.Lc
|
(Birefringence)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 6170031626) and the Natural Science Foundation of Chongqing City, China (Grant Nos. cstc2018jcyjAX0585 and cstc2017zdzxX0011). |
Corresponding Authors:
Xiao-Fa Wang
E-mail: wangxf@cqupt.edu.cn
|
Cite this article:
Xiao-Fa Wang(王小发), Dong-Xin Liu(刘东鑫), Hui-Hui Han(韩慧慧), and Hong-Yang Mao(毛红炀) Generation of cavity-birefringence-dependent multi-wavelength bright-dark pulse pair in a figure-eight thulium-doped fiber laser 2021 Chin. Phys. B 30 054205
|
[1] Wang X F, Zhang J H, Peng X L and Mao X F 2018 Chin. Phys. B 27 084215 [2] Huang S S, Wang Y G, Yan P G, Zhao J Q, Li H Q and Lin R Y 2014 Opt. Express 22 11417 [3] Tang D Y, Zhang H, Zhao L M and Wu X 2008 Phys. Rev. Lett. 101 153904 [4] Song Y F, Chen S, Zhang Q, Li L, Zhao L M, Zhang H and Tang D Y 2016 Opt. Express 24 25933 [5] Guo B, Yao Y, Yang Y F, Yuan Y J, Jin L, Yan B and Zhang J Y 2015 Photon. Res. 3 94 [6] Krzempek K and Abramski K 2016 Opt. Express 24 22379 [7] Gupta P K, Singh C P, Singh A, Sharma S K, Mukhopadhyay P K and Bindra K S 2016 Appl. Opt. 55 9961 [8] Zhao J Q, Li L, Zhao L M, Tang D Y and Shen D Y 2018 Opt. Lett. 43 247 [9] Markom A M, Tan S J, Haris H, Paul M C, Dhar A, Das S and Harun S W 2018 Chin. Phys. Lett. 35 024203 [10] Tomlinson W J, Hawkins R J, Weiner A M, Heritage J P and Thurston R N 1989 J. Opt. Soc. Am. B 6 329 [11] Zhang H, Tang D Y, Zhao L M and Wu X 2009 Phys. Rev. A 80 045803 [12] Song Y F, Shi X J, Wu C F, Tang D Y and Zhang H 2019 Appl. Phys. Rev. 6 021313 [13] Dreischuh A, Neshev D N, Petersen D E, Bang O and Krolikowski W 2006 Phys. Rev. Lett. 96 043901 [14] Tian J P, Tian H P, Li Z H and Zhou G S 2004 J. Opt. Soc. Am. B 21 1908 [15] Afanasjev V V, Dianov E M and Serkin V N 1989 IEEE J. Quantum Electron. 25 2656 [16] Lisak M, Höök A and Anderson D 1990 J. Opt. Soc. Am. B 7 810 [17] Wang H Y, Xu W C, Cao W J, Wang L Y and Dong J L 2012 Laser Phys. 22 282 [18] Ning Q Y, Wang S K, Luo A P, Lin Z B, Luo Z C and Xu W C 2012 IEEE Photon. J. 4 1647 [19] Li X L, Zhang S M, Meng Y C and Hao Y P 2013 Opt. Express 21 8409 [20] Gao J, Hu F M, Huo X D and Gao P 2014 Laser Phys. 24 085104 [21] Guo B, Yao Y, Tian J J, Zhao Y F, Liu S, Li M and Quan M R 2015 IEEE Photon. Technol. Lett. 27 701 [22] Zhang Z X, Mou C B, Yan Z J, Sun Z Y and Zhang L 2016 Appl. Phys. B 122 161 [23] Zhao R W, Li G R, Zhang B T and He J L 2018 Opt. Express 26 5819 [24] Fu S G, Shang X X, Zhang F, Xing F, Man Z S, Zhang W F, Wang B Y, Li D W and Zhang H N 2019 Appl. Opt. 58 9217 [25] Zheng Y, Wang M X, Zhao R, Zhang H N, Liu D H and Li D W 2020 Appl. Opt. 59 396 [26] Yan Z Y, Li X H, Tang Y L, Shum P P, Yu X, Zhang Y and Wang Q J 2015 Opt. Express 23 4369 [27] Wang X F, Peng X L, Jiang Q X, Gu X H, Zhang J H, Mao X F and Yuan S Z 2017 Chin. Phys. B 26 114205 [28] Guo B, Yao Y, Yang Y F, Yuan Y J, Wang R L, Wang S G, Ren Z H and Yan B 2015 J. Appl. Phys. 117 063108 [29] Tang D Y, Zhao L M, Zhao B and Liu A Q 2005 Phys. Rev. A 72 043816 [30] Liu S, Yan F P, Ting F, Zhang L N, Bai Z Y, Han W G and Zhou H 2016 IEEE Photon. Technol. Lett. 28 864 [31] Ma W Z, Wang T S, Wang F R, Zhao D S, Liu R M, Zhang J and Jiang H L 2019 IEEE Photon. Technol. Lett. 31 242 [32] Liu J W, Tong Z R, Zhang W H, Shi X T and Li J X 2020 Laser Phys. 30 115101 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|