ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Self-starting all-fiber PM Er: laser mode locked by a biased nonlinear amplifying loop mirror |
Ke Yin(殷科)1,3, Yi-Ming Li(李仪茗)2, Yan-Bin Wang(王彦斌)4, Xin Zheng(郑鑫)1, Tian Jiang(江天)2 |
1 National Innovation Institute of Defense Technology, Academy of Military Sciences PLA China, Beijing 100071, China; 2 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; 3 State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha 410073, China; 4 Luoyang Electronic Equipment Test Center of China, Luoyang 471003, China |
|
|
Abstract A compact all-fiber polarization-maintaining Er:laser using a nonlinear amplifying loop mirror is reported. Fundamental single-pulse mode-locking operation can always self start, with a cavity round-trip decreased from~4.7 m to~1.7 m. When the pulse repetition rate is 121.0328 MHz, output pulse is measured to have a center wavelength/3-dB spectral bandwidth/radio frequency signal to noise ratio (SNR)/pulse width of 1571.65 nm/18.70 nm/80 dB/477 fs, respectively. Besides, three states including the exponential growth, damping state, and steady state are investigated through the build-up process both experimentally and numerically. Excellent stability of this compact Er:laser is further evaluated, demonstrating that it can be an easy-fabrication maintenance-free ultrafast candidate for the scientific area of this kind.
|
Received: 11 July 2019
Revised: 03 September 2019
Accepted manuscript online:
|
PACS:
|
42.55.Wd
|
(Fiber lasers)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61805282, 11802339, and 11504420), the Opening Foundation of State Key Laboratory of High Performance Computing, China (Grant No. 201601-02), the Open Research Fund of Hunan Provincial Key Laboratory of High Energy Technology, China (Grant No. GNJGJS03), the Opening Foundation of State Key Laboratory of Laser Interaction with Matter, China (Grant No. SKLLIM1702), and the China Postdoctoral Innovation Science Foundation (Grant No. BX20180373). |
Corresponding Authors:
Tian Jiang
E-mail: tjiang@nudt.edu.cn
|
Cite this article:
Ke Yin(殷科), Yi-Ming Li(李仪茗), Yan-Bin Wang(王彦斌), Xin Zheng(郑鑫), Tian Jiang(江天) Self-starting all-fiber PM Er: laser mode locked by a biased nonlinear amplifying loop mirror 2019 Chin. Phys. B 28 124203
|
[35] |
Chen F, Hao Q and Zeng H 2017 IEEE Photon. Technol. Lett. 29 2119
|
[1] |
Ngo N Q 2011 Ultra-fast Fiber Lasers: Principles and Applications with MATLAB Models (CRC Press)
|
[36] |
Chang Y, Jiang T, Zhang Z and Wang A 2019 Chin. Opt. Lett. 17 053201
|
[2] |
Dudley J M and Taylor J R 2010 Supercontinuum generation in optical fibers (Cambridge University Press)
|
[37] |
Jeon J, Lee J and Lee J H 2015 J. Opt. Soc. Am. B 32 31
|
[3] |
Yin K, Zhang B, Yao J, Yang L, Chen S and Hou J 2016 Opt. Lett. 41 946
|
[38] |
Ma C, Tian X, Gao B and Wu G 2018 Opt. Commun. 410 941
|
[4] |
Dvoyrin V and Sorokina I 2014 Laser Phys. Lett. 11 085108
|
[39] |
Nishizawa N, Suga H and Yamanaka M 2019 Opt. Express 27 19218
|
[5] |
Kim J and Song Y 2016 Adv. Opt. Photon. 8 465
|
[6] |
Zhang Y Y, Yan L L, Zhao W Y, Meng S, Fan S T, Zhang L, Guo W G, Zhang S G and Jiang H F 2015 Chin. Phys. B 24 064209
|
[7] |
Volpe A, Di Niso F, Gaudiuso C, De Rosa A, Vázquez R M, Ancona A, Lugará P M and Osellame R 2015 Opt. Express 23 4114
|
[8] |
Yin K, Zhang B, Li L, Zhou X, Jiang T and Hou J 2015 Photon. Res. 3 72
|
[9] |
Liu W, Pang L, Han H, Tian W, Chen H, Lei M, Yan P and Wei Z 2016 Sci. Rep. 5 19997
|
[10] |
Jiang T, Miao R, Zhao J, Xu Z, Zhou T, Wei K, You J, Zheng X, Wang Z and Cheng X A 2019 Chin. Opt. Lett. 17 020005
|
[11] |
Wei K, Jiang T, Xu Z J, Zhou J H, You J, Tang Y X, Li H, Chen R Z, Zheng X, Wang S S, Yin K, Wang Z Y, Wang J and Cheng X A 2018 Laser Photon. Rev. 12 1800128
|
[12] |
Luo Z C, Liu M, Luo A P and Xu W C 2018 Chin. Phys. B 27 094215
|
[13] |
Wang F 2017 Chin. Phys. B 26 034202
|
[14] |
Zhang J, Ouyang H, Zheng X, You J, Chen R, Zhou T, Sui Y, Liu Y, Cheng X and Jiang T 2018 Opt. Lett. 43 243
|
[15] |
Zhang J, Jiang T, Zhou T, Ouyang H, Zhang C, Xin Z, Wang Z and Cheng X A 2018 Photon. Res. 6 C8
|
[16] |
Wei K, Xu Z, Chen R, Zheng X, Cheng X and Jiang T 2016 Opt. Lett. 41 3821
|
[17] |
Wang J, Yin J, He T and Yan P 2018 Chin. Phys. B 27 084214
|
[18] |
Wang J, Jiang Z, Chen H, Li J, Yin J, Wang J, He T, Yan P and Ruan S 2018 Photon. Res. 6 535
|
[19] |
Cui Y and Liu X 2019 Photon. Res. 7 423
|
[20] |
Yang J M, Yang Q, Liu J, Wang Y G and Tsang Y H 2013 Chin. Phys. B 22 094210
|
[21] |
Lee J and Lee J H 2018 Chin. Phys. B 27 094219
|
[22] |
Matsas V J, Richardson D J, Newson T P and Payne D N 1993 Opt. Lett. 18 358
|
[23] |
Nelson L, Jones D, Tamura K, Haus H and Ippen E 1997 Appl. Phys. B 65 277
|
[24] |
Ilday F, Chen J and Kärtner F 2005 Opt. Express 13 2716
|
[25] |
Zhang D P J A P S 2012 Acta Phys. Sin. 61 044206 (in Chinese)
|
[26] |
Wang J L, Wang X L, He B R, Wang Y G, Zhu J F and Wei Z Y 2015 Chin. Phys. Lett. 32 114202
|
[27] |
Ou S M, Liu G Y, Lei H, Zhang Z G and Zhang Q M 2017 Chin. Phys. Lett. 34 074207
|
[28] |
Li J, Zhang Z, Sun Z, Luo H, Liu Y, Yan Z, Mou C, Zhang L and Turitsyn S K 2014 Opt. Express 22 7875
|
[29] |
Szczepanek J, Kardaś T M, Michalska M, Radzewicz C and Stepanenko Y 2015 Opt. Lett. 40 3500
|
[30] |
Guo Z, Hao Q, Yang S, Liu T, Hu H and Zeng H 2017 IEEE Photon. J. 9 1
|
[31] |
Aguergaray C, Broderick N G R, Erkintalo M, Chen J S Y and Kruglov V 2012 Opt. Express 20 10545
|
[32] |
Wanli Gao W G, Guanyu Liu G L and Zhigang Zhang Z Z 2018 Chin. Opt. Lett. 16 111401
|
[33] |
Hänsel W, Hoogl, H, Giunta M, Schmid S, Steinmetz T, Doubek R, Mayer P, Dobner S, Cleff C, Fischer M and Holzwarth R 2017 Appl. Phys. B 123 41
|
[34] |
Lezius M, Wilken T, Deutsch C, Giunta M, Mandel O, Thaller A, Schkolnik V, Schiemangk M, Dinkelaker A, Kohfeldt A, Wicht A, Krutzik M, Peters A, Hellmig O, Duncker H, Sengstock K, Windpassinger P, Lampmann K, Hülsing T, Hänsch T W and Holzwarth R 2016 Optica 3 1381
|
[35] |
Chen F, Hao Q and Zeng H 2017 IEEE Photon. Technol. Lett. 29 2119
|
[36] |
Chang Y, Jiang T, Zhang Z and Wang A 2019 Chin. Opt. Lett. 17 053201
|
[37] |
Jeon J, Lee J and Lee J H 2015 J. Opt. Soc. Am. B 32 31
|
[38] |
Ma C, Tian X, Gao B and Wu G 2018 Opt. Commun. 410 941
|
[39] |
Nishizawa N, Suga H and Yamanaka M 2019 Opt. Express 27 19218
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|