Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 064215    DOI: 10.1088/1674-1056/ac5611
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

All-fiber erbium-doped dissipative soliton laser with multimode interference based on saturable-reserve saturable hybrid optical switch

Xin Zhao(赵鑫), Renyan Wan(王仁严), Weiyan Li(李卫岩), Liang Jin(金亮), He Zhang(张贺), Yan Li(李岩), Yingtian Xu(徐英添), Linlin Shi(石琳琳), and Xiaohui Ma(马晓辉)
National Key Laboratory on High-Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun 130022, China
Abstract  Reverse saturable absorption is essential for the realization of dissipative solitons. In this paper, we introduce reverse saturable absorption by using nonlinear multimode interference (NL-MMI), for the first time, to the best of our knowledge, and obtain a stable dissipative soliton operation. By adjusting the coupling efficiency from multimode fiber to single mode fiber, the absorption properties of NL-MMI can be switched between saturation and reverse saturation. The dissipative soliton can be obtained with pulse width of 975 fs in the experiment, the 3-dB bandwidth at 1555 nm is 16 nm, and the maximum output power is 11.48 mW. The nonlinear absorption optical modulation and high damage threshold characteristics of the NL-MMI based ultrafast optical switch provide a new idea for realizing dissipative solitons.
Keywords:  multimode interference      laser mode-locking      abnormal saturable absorption  
Received:  19 October 2021      Revised:  05 February 2022      Accepted manuscript online:  17 February 2022
PACS:  42.55.Wd (Fiber lasers)  
Corresponding Authors:  Xin Zhao     E-mail:  zhaoxin@cust.edu.cn

Cite this article: 

Xin Zhao(赵鑫), Renyan Wan(王仁严), Weiyan Li(李卫岩), Liang Jin(金亮), He Zhang(张贺), Yan Li(李岩), Yingtian Xu(徐英添), Linlin Shi(石琳琳), and Xiaohui Ma(马晓辉) All-fiber erbium-doped dissipative soliton laser with multimode interference based on saturable-reserve saturable hybrid optical switch 2022 Chin. Phys. B 31 064215

[1] Cabasse A, Martel G and Oudar J L 2009 Opt. Express 17 9537
[2] Lefranois S, Liu C H, Sosnowski T S, Galvanauskas A and Wise F W 2011 Proceedings of SPIE - the International Society for Optical Engineering 7914 79141
[3] Li M, Zou X, Wu J, Shi J D, Qiu J F and Hong X B 2015 Appl. Opt. 54 8800
[4] Liu X 2014 General Assembly & Scientific Symposium IEEE
[5] Yan D, Li X L, Zhang S M, Han M M, Han H Y and Yang Z J 2016 Opt. Express 24 739
[6] Wang N, Cai J H, Qi X, Chen S P, Yang L J and Hou J 2018 Opt. Express 26 1689
[7] Zhang H, Tang D Y, Wu X and Zhao L M 2009 Opt. Express 17 12692
[8] Lee D, Park K, Debnath P C, Kim I and Song Y W 2016 Nanotechnology 27 365203
[9] Zhao C J, Huang B, Liu J, Tang P H and Wen S C 2016 Progress in Electromagnetic Research Symposium (PIERS) IEEE
[10] Wang M, Zhu J, Zi Y, Wu Z G, Hu H, Xie Z, Zhang Y, Hu L and Huang W 2021 J. Mater. Chem. A 9 12433
[11] Huang W, Zhu J, Wang M, Hu L, Tang Y, Shu Y, Xie Z and Zhang H 2020 Adv. Funct. Mater. 31 2007584
[12] Huang W, Ma C, Li C, Zhang Y and Zhang H 2021 Nanophotonics 9 8
[13] Huang W, Zhang Y, You Q, Hang P, Wang Y, Huang Z N, Ge Y, Wu L, Dong Z, Dai X, Xiang Y, Li J, Zhang X and Zhang H 2019 Small 15 1900902
[14] Zhang J, Jiang T and Zhou T 2018 Photon. Res. 6 C8
[15] Nazemosadat E and Mafi A 2013 J. Opt. Soc. Am. B 30 1357
[16] Fu S J, Sheng Q, Zhu X S, Shi W, Yao J Q, Shi G N, Norwood R A and Peyghambarian N 2015 Opt. Express 23 17255
[17] Wang Z K, Wang D N, Fan Y, Li L J, Zhao C L, Xu B, Jin S Z, Cao S Y and Fang Z J 2018 Opt. Lett. 43 2078
[18] Li H H, Wang Z K, Li C, Zhang J J and Xu S Q 2017 Opt. Express 25 26546
[19] Yang F, Wang D N, Wang Z K, Li L J, Zhao C L, Xu B, Jin S Z, Cao S Y and Fang Z J 2018 Opt. Express 26 927
[20] Chen H J, Liu M, Yao J, Hu S, He J B, Luo A P, Xu W C and Luo Z C 2018 Opt. Express 26 2972
[21] Khattak A, Tatel G and Li W 2018 Appl. Sci. 8 1135
[22] Zhan H W, Jin L, Zhang H, Xu Y T, Shi L L, Wang T B, Chen H C, Wang D T and Ma X H 2019 Opt. Commun. 452 7
[23] Zhan H W, Jin L, Xu Y T, Zhang H, Shi L L, Wang T B, Pan W and Ma X H 2019 Appl. Opt. 58 5788
[24] Wang T B, Jin L, Zhang H W, Pan W, Zhang H, Xu Y T, Shi L L, Li Y, Zou Y G and Ma X H 2020 Ann. Phys.-Berlin 532 2000018
[25] Zhao Y, Jin Y and Liang H 2011 Photonics & Optoelectronics IEEE
[26] Hatta A M, Semenova Y, Rajan G and Farrell G 2012 Opt. Laser Techn. 42 1044
[1] Tunable characteristic of phase-locked quantum cascade laser arrays
Zeng-Hui Gu(顾增辉), Jin-Chuan Zhang(张锦川), Huan Wang(王欢), Peng-Chang Yang(杨鹏昌), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Jun-Qi Liu(刘俊岐), Li-Jun Wang(王利军), Shu-Man Liu(刘舒曼), Feng-Qi Liu(刘峰奇), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(10): 104201.
[2] Unitary transformation of general nonoverlapping-image multimode interference couplers with any input and output ports
Ze-Zheng Li(李泽正), Wei-Hua Han(韩伟华), Zhi-Yong Li(李智勇). Chin. Phys. B, 2020, 29(1): 014206.
[3] The 650-nm variable optical attenuator based on polymer/silica hybrid waveguide
Yue-Yang Yu(于跃洋), Xiao-Qiang Sun(孙小强), Lan-Ting Ji(姬兰婷), Guo-Bing He(何国冰), Xi-Bin Wang(王希斌), Yun-Ji Yi(衣云骥), Chang-Ming Chen(陈长鸣), Fei Wang(王菲), Da-Ming Zhang(张大明). Chin. Phys. B, 2016, 25(5): 054101.
[4] Semi-vectorial analysis of a compact wavelength demultiplexer based on the tapered multimode interference coupler
Xiao Jin-Biao(肖金标), Liu Xu(刘旭), Cai Chun(蔡纯), and Sun Xiao-Han(孙小菡). Chin. Phys. B, 2007, 16(7): 2015-2022.
[5] Steering light into logic patterns with two-dimensional cascaded multimode waveguide
Zhou Hai-Feng(周海峰), Yang Jian-Yi(杨建义), Wang Ming-Hua(王明华), and Jiang Xiao-Qing(江晓清). Chin. Phys. B, 2007, 16(3): 740-745.
No Suggested Reading articles found!