ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Observation of stable bound soliton with dual-wavelength in a passively mode-locked Er-doped fiber laser |
Yu Zheng(郑煜), Jin-Rong Tian(田金荣), Zi-Kai Dong(董自凯), Run-Qin Xu(徐润亲), Ke-Xuan Li(李克轩), Yan-Rong Song(宋晏蓉) |
College of Applied Sciences, Beijing University of Technology, Beijing 100124, China |
|
|
Abstract A phase-locked bound state soliton with dual-wavelength is observed experimentally in a passively mode-locked Er-doped fiber (EDF) laser with a fiber loop mirror (FLM). The pulse duration of the soliton is 15 ps and the peak-to-peak separation is 125 ps. The repetition rate of the pulse sequence is 3.47 MHz. The output power is 11.8 mW at the pump power of 128 mW, corresponding to the pulse energy of 1.52 nJ. The FLM with a polarization controller can produce a comb spectrum, which acts as a filter. By adjusting the polarization controller or varying the pump power, the central wavelength of the comb spectrum can be tuned. When it combines with the reflective spectrum of the fiber Bragg grating, the total spectrum of the cavity can be cleaved into two parts, then the bound state soliton with dual-wavelength at 1549.7 nm and 1550.4 nm is obtained.
|
Received: 30 October 2016
Revised: 27 March 2017
Accepted manuscript online:
|
PACS:
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
42.55.Wd
|
(Fiber lasers)
|
|
42.25.Lc
|
(Birefringence)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No.61575011) and the Key Project of the National Natural Science Foundation of China (Grant No.61235010). |
Corresponding Authors:
Yan-Rong Song
E-mail: yrsong@bjut.edu.cn
|
Cite this article:
Yu Zheng(郑煜), Jin-Rong Tian(田金荣), Zi-Kai Dong(董自凯), Run-Qin Xu(徐润亲), Ke-Xuan Li(李克轩), Yan-Rong Song(宋晏蓉) Observation of stable bound soliton with dual-wavelength in a passively mode-locked Er-doped fiber laser 2017 Chin. Phys. B 26 074212
|
[1] |
Yu H L, Wang X L, Zhou P, Xu X X and Chen J B 2015 IEEE Photon Technol. Lett. 27 737
|
[2] |
Su X C, Zhao R W, Zhang B T, Jia Z T and He J L 2015 Appl. Opt. 54 2118
|
[3] |
Tang C Y and Chai Y, Long H, Tao L L, Zeng L H, Zhang L and Lin X C 2015 Opt. Express 23 4880
|
[4] |
Jiang K, Wu Z C, Fu S N, Song J, Li H Z, Tang M, Shum P and Liu D M 2016 IEEE Photon Technol. Lett. 28 2019
|
[5] |
Li J P 2016 J Opt Soc. Korea 20 135
|
[6] |
Gong Y D, Shum P, Tang D Y, Lu C, Qi Z W, Lai W J, Man W S and Tam H Y 2003 Opt. Commun. 220 297
|
[7] |
Fedotov Y S, Ivanenko A V, Kobtsev S M and Smirnov S V 2014 Opt. Express 22 31379
|
[8] |
Liu T H, Jia D F, Liu Y and Wang Z Y 2015 Opt. Commun. 356 416
|
[9] |
He K N, Liu J X, Tian W L, Shen Z W, Xu X D, Wang Z H, Li D H, Xu J, Di J Q, Xia C T and Wei Z Y 2016 Chin. Phys. Lett. 33 094204
|
[10] |
Duan L N, Su Y L, Wang Y G, Li L, Wang X and Wang Y S 2016 Chin. Phys. B 25 024206
|
[11] |
Yan Z Y, Li X H, Tang Y L, Shum P P, Yu X, Zhang Y and Wang Q J 2015 Opt. Express 23 4369
|
[12] |
Cowle G J and Stepanov D Y 1996 IEEE Photon. Technol. Lett. 8 1465
|
[13] |
Jeon M Y, Kim N, Shin J, Jeong J S and Han SP 2010 Opt. Express 18 12291
|
[14] |
Zeng C, Cui Y D and Guo J 2015 Opt. Commun. 347 44
|
[15] |
Pottiez O, Hernandez-Garcia J C, Ibarra-Escamilla B and Kuzin E A 2012 Laser Phys. 22 1565
|
[16] |
Jia X J, Liu Y G, Guo Z C, Fu S G, Kai G Y and Dong X Y 2008 Opt. Commun. 281 90
|
[17] |
Shao Z, Qiao X, Rong Q and Su D 2015 Appl. Opt. 54 6711
|
[18] |
Niu C N, Wang Z K, Zhang J Y, Yu T, Zhou J, Li N, Qin G S, Ning D, Zhang F J and Feng D J 2016 Opt. Eng. 55 106115
|
[19] |
Wang S, Zhao Z G and Kobayashi Y 2016 Opt. Express 24 28228
|
[20] |
Jiang K, Wu Z C, Fu S N, Song J, Li H Z, Tang M and Liu D M 2016 IEEE Photon. Technol. Lett. 28 2019
|
[21] |
Liu J H, Tian J R, Guoyu H Y, Xu R Q, Li K X, Song Y R, Zhang X P, Liang B S and Xu J 2016 Chin. Phys. B 25 034207
|
[22] |
Wu X, Tang D Y, Luan X N and Zhang Q 2011 Opt. Commun. 284 3615
|
[23] |
Wang S K, Ning Q Y, Luo A P, Lin Z B, Luo Z C and Xu W C 2013 Opt. Express 21 2402
|
[24] |
Tang D Y, Zhao L M and Zhao B 2005 Appl. Phys. B 80 239
|
[25] |
Soto-Crespo J M, Akhmediev N, Grelu P and Belhache F 2003 Opt. Lett. 28 1757
|
[26] |
Hideur A, Ortac B, Chartier T, Leblond H, Sanchez F and Brunel M 2003 Opt. Commun. 225 71
|
[27] |
Liu X M 2009 Opt. Express 17 22401
|
[28] |
Grelu P H, Belhache F, Gutty F and Soto-Crespo J M 2002 Opt. Lett. 27 966
|
[29] |
Seong N H and Kim D Y 2002 Opt. Lett. 27 1321
|
[30] |
Ortac B, Hideur A, Chartier T, Brunel M, Grelu P, Leblond H and Sanchez F 2004 IEEE Photon. Technol. Lett. 16 1274
|
[31] |
Ortac B, Hideur A, Brunel M, Chedot C, Limpert J and Tunnermann A 2006 Opt. Express 14 6075
|
[32] |
Haboucha A, Leblond H, Salhi M, Komarov A and Sanchez F 2008 Opt. Lett. 33 524
|
[33] |
Komarov A, Komarov K and Sanchez F 2009 Phys. Rev. A 79 033807.
|
[34] |
Du J, Zhang S, Li H F, MengY C, HaoY P and Li X L 2013 Opt. Laser Technol. 46 61
|
[35] |
Zhao J Q, Wang Y G, Yan P G, Ruan S C, Zhang G L, Li H Q and Tang Y H 2013 Laser Phys. 23 075105
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|