ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Influences of annealing temperature on properties of Fe2+: ZnSe thin films deposited by electron beam evaporation and their applications to Q-switched fiber laser |
Du-Xin Qing(卿杜鑫)1, Shu-Tong Wang(王树同)1, Shou-Gui Ning(宁守贵)1, Wei Zhang(张伟)1, Xiao-Xu Chen(陈晓旭)1, Hong Zhang(张弘)1, Guo-Ying Feng(冯国英)1, Shou-Huan Zhou(周寿桓)1,2 |
1 Institute of Laser&Micro/Nano Engineering, College of Electronics&Information Engineering, Sichuan University, Chengdu 610064, China; 2 North China Research Institute of Electro-Optics, Beijing 100015, China |
|
|
Abstract Fe2+:ZnSe thin films are prepared on sapphire substrate at room temperature by electron beam evaporation and then annealed in vacuum (about 1×10-4 Pa) at different temperatures. The influences of thermal annealing on the structural and optical properties of these films such as grain size and optical transmittance are investigated. The x-ray diffraction patterns show that the Fe2+:ZnSe thin film is preferred to be oriented along the (111) plane at different annealing temperatures. After the film is annealed, the full-width-at-half-maximum (FWHM ) of the x-ray diffraction peak profile (111) of the film decreases and its crystal quality is improved. Scanning electron microscope images show that the films are more dense after being annealed. Finally, the sample is used as a saturable absorber in ZBLAN fiber laser. The annealed Fe2+:ZnSe thin films can be used to realize stable Q-switching modulation on ZBLAN fiber laser. The results demonstrate that the Fe2+:ZnSe thin film is a promising material for generating the high-power pulses of mid-infrared Q-switched fiber lasers.
|
Received: 31 January 2020
Revised: 14 March 2020
Accepted manuscript online:
|
PACS:
|
42.60.Gd
|
(Q-switching)
|
|
42.70.Hj
|
(Laser materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11574221) and the Graduate Student's Research and Innovation Fund of Sichuan University, China (Grant No. 2018YJSY008). |
Corresponding Authors:
Guo-Ying Feng
E-mail: guoing_feng@scu.edu.cn
|
Cite this article:
Du-Xin Qing(卿杜鑫), Shu-Tong Wang(王树同), Shou-Gui Ning(宁守贵), Wei Zhang(张伟), Xiao-Xu Chen(陈晓旭), Hong Zhang(张弘), Guo-Ying Feng(冯国英), Shou-Huan Zhou(周寿桓) Influences of annealing temperature on properties of Fe2+: ZnSe thin films deposited by electron beam evaporation and their applications to Q-switched fiber laser 2020 Chin. Phys. B 29 054208
|
[1] |
Mirov S B, Fedorov V V, Martyshkin D, Moskalev I S, Mirov M and Vasilyev S 2015 IEEE J. Sel. Topics Quantum Electron. 21 292
|
[2] |
Grebe G, Roussos G and Schulz H J 1976 J. Lumin. 12 701
|
[3] |
DeLoach L D, Page R H, Wilke G D, Payne S A and Krupke W F 1996 IEEE J. Quantum Electron. 32 885
|
[4] |
Lehr M U, Litzenburger B, Kreissl J, Pohl U, Selber H, Schulz H, Klimakow A and Worschech L 1997 J. Phys.-Condes. Matter 9 753
|
[5] |
Page R H, Schaffers K I, DeLoach L D, Wilke G D, Patel F D, Tassano J B, Payne S A, Krupke W F, Chen K T and Burger A 1997 IEEE J. Quantum Electron. 33 609
|
[6] |
Godlewski M, Surma M, Ivanov V Y and Surkova T 2004 Low Temp. Phys. 30 891
|
[7] |
Mirov S B, Moskalev I S, Vasilyev S, Smolski V, Fedorov V V, Martyshkin D, Peppers J, Mirov M, Dergachev A and Gapontsev V 2018 IEEE J. Sel. Topics Quantum Electron. 24 1
|
[8] |
Tittel F K 1998 Appl. Phys. B 67 273
|
[9] |
Burger A, Chattopadhyay K, Ndap J O, Ma X, Morgan S, Rablau C, Su C H, Feth S, Page R H and Schaffers K I 2001 J. Cryst. Growth 225 249
|
[10] |
Waynant R W, Ilev I K and Gannot I 2001 Philos. Trans. R. Soc. London. Ser. A: Math. Phys. Eng. Sci. 359 635
|
[11] |
Mirov S B, Fedorov V, Martyshkin D, Moskalev I, Mirov M and Gapontsev V 2011 Opt. Mater. Express 1 898
|
[12] |
Voronov A A, Kozlovskii V I, Korostelin Y V, Landman A I, Podmar'kov Y P, Polushkin V G and Frolov M P 2006 Quantum Electron. 36 1
|
[13] |
Liu M L, OuYang Y Y, Hou H R, Lei M, Liu W J and Wei Z Y 2018 Chin. Phys. B 27 084211
|
[14] |
Wang X, Li L, Li J P and Wang Y G 2017 Chin. Phys. B 26 044203
|
[15] |
Sun Z, Cheng G H, Liu H, Wang X and Wang Y G 2017 Chin. Phys. Lett. 34 014204
|
[16] |
Ling W, Xia T, Dong Z, Liu Q, Lu F and Wang Y 2017 Acta Phys. Sin. 66 114207 (in Chinese)
|
[17] |
Hisamuddin N, Zakaria U, Zulkifli M, Latiff A, Ahmad H and Harun S 2016 Chin. Phys. Lett. 33 074208
|
[18] |
Dun Y, Li P, Chen X and Ma B 2016 Chin. Phys. Lett. 33 024201
|
[19] |
Liu Y, Liu Z, Cong Z, Xu X, Xu J, Men S, Xia J and Zhang S 2015 Acta Phys. Sin. 64 174203 (in Chinese)
|
[20] |
Zhang F, Zhang H N, Liu D H, Liu J, Ma F K, Jiang D P, Pang S Y, Su L B and Xu J 2017 Chin. Phys. B 26 024205
|
[21] |
Yang X T, Liu L and Xie W Q 2017 Chin. Phys. Lett. 34 024201
|
[22] |
Li J, Luo H, Wang L, Zhai B, Li H and Liu Y 2015 Opt. Express 23 22362
|
[23] |
Wei C, Zhu X, Norwood R A and Peyghambarian N 2012 IEEE Photon. Technol. Lett. 24 1741
|
[24] |
Ning S, Feng G, Zhang H, Zhang W, Dai S and Zhou S 2019 Opt. Mater. 89 473
|
[25] |
Zhang T, Feng G, Zhang H, Yang X, Dai S and Zhou S 2016 Laser Phys. Lett. 13 075102
|
[26] |
Ning S, Feng G, Zhang H, Zhang W, Dai S, Xiao Y, Li W, Chen X and Zhou S 2018 Opt. Mater. Express 8 865
|
[27] |
Polyakov S M, Karhu E, Zamiri R, Moisset C, Iliopoulos K, Vullum P E, Osterberg U L and Gibson U J 2018 Opt. Mater. Express 8 356
|
[28] |
Tolstik N, Sorokin E, Karhu E A, Gorbachenya K, Polyakov S M, Kisel V E, Kuleshov N, Furtula V, Gibson U J and Sorokina I T 2018 Opt. Mater. Express 8 522
|
[29] |
Bacaksiz E, Aksu S, Polat I, Yilmaz S and Altunbaş M 2009 J. Alloys Compd. 487 280
|
[30] |
Ou K, Wang S, Huang M, Zhang Y, Wang Y, Duan X and Yi L 2018 J. Lumin. 199 34
|
[31] |
Alam M J and Cameron D C 2000 Thin Solid Films 377-378 455
|
[32] |
Bedir M, Öztaş M, Bakkaloğlu Ö and Ormanci R 2005 Eur. Phys. J. B-Condens. Matter Complex Syst. 45 465
|
[33] |
Subbaiah Y V, Prathap P, Devika M and Reddy K R 2005 Physica B 365 240
|
[34] |
De C and Misra N 1997 Indian J. Phys. A71 535
|
[35] |
Venkatachalam S, Mangalaraj D, Narayandass S K, Kim K and Yi J 2005 Physica B 358 27
|
[36] |
Kalita P K, Sarma B and Das H 2000 Bull. Mater. Sci. 23 313
|
[37] |
Williams J, Fedorov V, Martyshkin D, Moskalev I, Camata R and Mirov S 2010 Opt. Express 18 25999
|
[38] |
Zhu G, Zhu X, Balakrishnan K, Norwood R A and Peyghambarian N 2013 Opt. Mater. Express 3 1365
|
[39] |
Ning S, Feng G, Dai S, Zhang H, Zhang W, Deng L and Zhou S 2018 AIP Adv. 8 025121
|
[40] |
Herda R, Kivistö S and Okhotnikov O G 2008 Opt. Lett. 33 1011
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|