Special Issue:
SPECIAL TOPIC — Optical field manipulation
|
SPECIAL TOPIC—Optical field manipulation |
Prev
Next
|
|
|
Phase-matched second-harmonic generation in hybrid polymer-LN waveguides |
Zijie Wang(王梓杰)1, Bodong Liu(刘伯东)1, Chunhua Wang(王春华)2,†, and Huakang Yu(虞华康)1,3,‡ |
1. School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, China; 2. School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan 523808, China; 3. China-Singapore International Joint Research Institute, Guangzhou Knowledge City, Guangzhou 510663, China |
|
|
Abstract Here we propose a hybrid polymer-LN waveguide for achieving phase-matched second-harmonic generation (SHG). From the aspect of super-mode theory, the geometric parameters of the hybrid semi-nonlinear waveguide were optimized to utilize both symmetric (even) and antisymmetric (odd) modes of the pump and SHG waves so as to facilitate phase matching with large modal overlap. Phase matching between a fundamental even (TE00-like) mode at 1320 nm and a fundamental odd (TE01-like) mode at 660 nm was found with a calculated modal overlap integral of 0.299, while utilizing the largest nonlinear coefficient d33, and achieving an efficient calculated normalized conversion efficiency of 148% W-1·cm-2. Considering the fabrication feasibility of such hybrid waveguide with features including etchless, large dimension, and low structural sensitivity, we believe our findings would provide a useful reference for future on-chip efficient nonlinear conversion devices.
|
Received: 23 February 2022
Revised: 22 April 2022
Accepted manuscript online:
|
PACS:
|
42.65.Wi
|
(Nonlinear waveguides)
|
|
42.82.-m
|
(Integrated optics)
|
|
52.35.Mw
|
(Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))
|
|
42.65.-k
|
(Nonlinear optics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91850107 and 12174116), the National Key Research and Development Program of China (Grant No. 2018YFA0306200), Guangdong Innovative and Entrepreneurial Research Team Program (Grant No. 2016ZT06C594), the Key Program of Guangzhou Scientific Research Special Project (Grant No. 201904020013), the Science and Technology Project of Guangdong Province, China (Grant No. 2020B010190001), and the Fundamental Research Funds for the Central Universities. |
Corresponding Authors:
Chunhua Wang, Huakang Yu
E-mail: wangch0515@163.com;hkyu@scut.edu.cn
|
Cite this article:
Zijie Wang(王梓杰), Bodong Liu(刘伯东), Chunhua Wang(王春华), and Huakang Yu(虞华康) Phase-matched second-harmonic generation in hybrid polymer-LN waveguides 2022 Chin. Phys. B 31 104208
|
[1] Boyd R W 2003 Nonlinear Optics, 3rd edn. (New York: Academic Press) pp. 96—104 [2] Shen Y R 1984 The principles of nonlinear optics (New York: John Wiley & Sons) pp. 14—35 [3] Alibart O, D'Auria V, De Micheli M, Doutre F, Kaiser F, Labonte L, Lunghi T, Picholle E and Tanzilli S 2016 J. Opt. 18 104001 [4] Guo X, Ying Y B and Tong L M 2014 Acc. Chem. Res. 47 656 [5] Koos C, Vorreau P, Vallaitis T, Dumon P, Bogaerts W, Baets R, Esembeson B, Biaggio I, Michinobu T, Diederich F, Freude W and Leuthold J 2009 Nat. Photon. 3 216 [6] Subbaraman H, Xu X, Hosseini A, Zhang X, Zhang Y, Kwong D and Chen R T 2015 Opt. Express 23 2487 [7] Moss D J, Morandotti R, Gaeta A L and Lipson M 2013 Nat. Photon. 7 597 [8] Hui H, Jin Y, Li G and Sohler W 2012 Proc. SPIE 8431 84311D [9] Boes A, Corcoran B, Chang L, Bowers J and Mitchell A 2018 Laser Photon. Rev. 12 1700256 [10] Kong Y F, Bo F, Wang W W, Zheng D H and Xu J J 2020 Adv. Mater. 32 1806452 [11] Lin J T, Bo F, Cheng Y and Xu J J 2020 Photon. Res. 8 1910 [12] Hu X P, Xu P and Zhu S N 2013 Photon. Res. 1 171 [13] Ma F, Liang L Y, Chen J P, Gao Y, Zheng M Y, Xie X P, Liu H, Zhang Q and Pan J W 2018 J. Opt. Soc. Am. B - Opt. Phys. 35 2096 [14] Rao S V, Moutzouris K and Ebrahimzadeh M 2004 J. Opt. A-Pure. Appl. Opt. 6 569 [15] Fiore A, Janz S, Delobel L, Vander Meer P, Bravetti P, Berger V, Rosencher E and Nagle J 1998 Appl. Phys. Lett. 72 2942 [16] Foster M A, Turner A C, Michal L and Gaeta A L 2008 Opt. Express 16 1300 [17] Lin J T, Yao N, Hao Z Z, Zhang J H, Mao W B, Wang M, Chu W, Wu R B, Fang Z and Qiao L 2019 Phys. Rev. Lett. 122 173903 [18] Wang L, Wang C, Wang J, Fang B, Zhang M, Gong Q, Marko L and Xiao Y F 2018 Opt. Lett. 43 2917 [19] Liang H X, Luo R, He Y, Jiang H W and Lin Q 2017 Optica 4 1251 [20] Fang Z W, Yao N, Wang M, Lin J T, Zhang J H, Wu R B, Qiao L L, Fang W, Lu T and Cheng Y 2017 Int. J. Optomechatron. 11 47 [21] Lin Z, Liang X, Loncar M, Johnson S G and Rodriguez A W 2016 Optica 3 233 [22] Lin J T, Xu Y X, Ni J L, Wang M, Fang Z W, Qiao L L, Fang W and Cheng Y 2016 Phys. Rev. Appl. 6 014002 [23] Guo X, Zou C L and Tang H X 2016 Optica 3 1126 [24] Guo X, Zou C L, Jung H and Tang H X 2016 Phys. Rev. Lett. 117 123902 [25] Kuo P S, Bravo-Abad J and Solomon G S 2014 Nat. Commun. 5 4109 [26] Buckley S, Radulaski M, Biermann K and Vukovi J 2013 Appl. Phys. Lett. 103 211117 [27] Pernice W, Xiong C, Schuck C and Tang H X 2012 Appl. Phys. Lett. 100 153901 [28] Levy J S, Foster M A, Gaeta A L and Lipson M 2011 Opt. Express 19 11415 [29] Wang L, Zhang X Q and Chen F 2021 Laser Photon. Rev. 15 2100409 [30] Luo R, He Y, Liang H, Li M and Lin Q 2019 Laser Photon. Rev. 13 1800288 [31] Yu Z J, Xi X, Ma J W, Tsang H K and Sun X K 2019 Optica 6 1342 [32] Zou C L, Cui J M, Sun F W, Xiong X, Zou X B, Han Z F and Guo G C 2015 Laser Photon. Rev. 9 114 [33] Yu Y, Yu Z J, Wang L and Sun X K 2021 Adv. Opt. Mater. 9 2100060 [34] Fang B, Gao S L, Wang Z Z, Zhu S N and Li T 2021 Chin. Opt. Lett. 19 060004 [35] Haus H A, Huang W P and Snyder A W 1989 Opt. Lett. 14 1222 [36] Kapon E, Katz J and Yariv A 1984 Opt. Lett. 9 125 [37] Snyder A W and Young W R 1978 J. Opt. Soc. Am. 68 297 [38] Liu B D, Yu H K, Li Z Y and Tong L M 2019 J. Opt. Soc. Am. B - Opt. Phys. 36 2650 [39] Dong P, Upham J, Jugessur A and Kirk A G 2006 Opt. Express 14 2256 [40] Dong P and Kirk A G 2004 Phys. Rev. Lett. 93 133901 [41] Luo R, He Y, Liang H X, Li M X and Lin Q 2018 Optica 5 1006 [42] Zhu C Y, Chen Y P, Li G Z, Ge L C, Zhu B, Hu M N and Chen X F 2017 Chin. Opt. Lett. 15 091901 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|