Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 104208    DOI: 10.1088/1674-1056/ac6edc
Special Issue: SPECIAL TOPIC — Optical field manipulation
SPECIAL TOPIC—Optical field manipulation Prev   Next  

Phase-matched second-harmonic generation in hybrid polymer-LN waveguides

Zijie Wang(王梓杰)1, Bodong Liu(刘伯东)1, Chunhua Wang(王春华)2,†, and Huakang Yu(虞华康)1,3,‡
1. School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, China;
2. School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan 523808, China;
3. China-Singapore International Joint Research Institute, Guangzhou Knowledge City, Guangzhou 510663, China
Abstract  Here we propose a hybrid polymer-LN waveguide for achieving phase-matched second-harmonic generation (SHG). From the aspect of super-mode theory, the geometric parameters of the hybrid semi-nonlinear waveguide were optimized to utilize both symmetric (even) and antisymmetric (odd) modes of the pump and SHG waves so as to facilitate phase matching with large modal overlap. Phase matching between a fundamental even (TE00-like) mode at 1320 nm and a fundamental odd (TE01-like) mode at 660 nm was found with a calculated modal overlap integral of 0.299, while utilizing the largest nonlinear coefficient d33, and achieving an efficient calculated normalized conversion efficiency of 148% W-1·cm-2. Considering the fabrication feasibility of such hybrid waveguide with features including etchless, large dimension, and low structural sensitivity, we believe our findings would provide a useful reference for future on-chip efficient nonlinear conversion devices.
Keywords:  nonlinear waveguides      super-mode theory      phase matching      second harmonic generation  
Received:  23 February 2022      Revised:  22 April 2022      Accepted manuscript online: 
PACS:  42.65.Wi (Nonlinear waveguides)  
  42.82.-m (Integrated optics)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  42.65.-k (Nonlinear optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91850107 and 12174116), the National Key Research and Development Program of China (Grant No. 2018YFA0306200), Guangdong Innovative and Entrepreneurial Research Team Program (Grant No. 2016ZT06C594), the Key Program of Guangzhou Scientific Research Special Project (Grant No. 201904020013), the Science and Technology Project of Guangdong Province, China (Grant No. 2020B010190001), and the Fundamental Research Funds for the Central Universities.
Corresponding Authors:  Chunhua Wang, Huakang Yu     E-mail:  wangch0515@163.com;hkyu@scut.edu.cn

Cite this article: 

Zijie Wang(王梓杰), Bodong Liu(刘伯东), Chunhua Wang(王春华), and Huakang Yu(虞华康) Phase-matched second-harmonic generation in hybrid polymer-LN waveguides 2022 Chin. Phys. B 31 104208

[1] Boyd R W 2003 Nonlinear Optics, 3rd edn. (New York: Academic Press) pp. 96—104
[2] Shen Y R 1984 The principles of nonlinear optics (New York: John Wiley & Sons) pp. 14—35
[3] Alibart O, D'Auria V, De Micheli M, Doutre F, Kaiser F, Labonte L, Lunghi T, Picholle E and Tanzilli S 2016 J. Opt. 18 104001
[4] Guo X, Ying Y B and Tong L M 2014 Acc. Chem. Res. 47 656
[5] Koos C, Vorreau P, Vallaitis T, Dumon P, Bogaerts W, Baets R, Esembeson B, Biaggio I, Michinobu T, Diederich F, Freude W and Leuthold J 2009 Nat. Photon. 3 216
[6] Subbaraman H, Xu X, Hosseini A, Zhang X, Zhang Y, Kwong D and Chen R T 2015 Opt. Express 23 2487
[7] Moss D J, Morandotti R, Gaeta A L and Lipson M 2013 Nat. Photon. 7 597
[8] Hui H, Jin Y, Li G and Sohler W 2012 Proc. SPIE 8431 84311D
[9] Boes A, Corcoran B, Chang L, Bowers J and Mitchell A 2018 Laser Photon. Rev. 12 1700256
[10] Kong Y F, Bo F, Wang W W, Zheng D H and Xu J J 2020 Adv. Mater. 32 1806452
[11] Lin J T, Bo F, Cheng Y and Xu J J 2020 Photon. Res. 8 1910
[12] Hu X P, Xu P and Zhu S N 2013 Photon. Res. 1 171
[13] Ma F, Liang L Y, Chen J P, Gao Y, Zheng M Y, Xie X P, Liu H, Zhang Q and Pan J W 2018 J. Opt. Soc. Am. B - Opt. Phys. 35 2096
[14] Rao S V, Moutzouris K and Ebrahimzadeh M 2004 J. Opt. A-Pure. Appl. Opt. 6 569
[15] Fiore A, Janz S, Delobel L, Vander Meer P, Bravetti P, Berger V, Rosencher E and Nagle J 1998 Appl. Phys. Lett. 72 2942
[16] Foster M A, Turner A C, Michal L and Gaeta A L 2008 Opt. Express 16 1300
[17] Lin J T, Yao N, Hao Z Z, Zhang J H, Mao W B, Wang M, Chu W, Wu R B, Fang Z and Qiao L 2019 Phys. Rev. Lett. 122 173903
[18] Wang L, Wang C, Wang J, Fang B, Zhang M, Gong Q, Marko L and Xiao Y F 2018 Opt. Lett. 43 2917
[19] Liang H X, Luo R, He Y, Jiang H W and Lin Q 2017 Optica 4 1251
[20] Fang Z W, Yao N, Wang M, Lin J T, Zhang J H, Wu R B, Qiao L L, Fang W, Lu T and Cheng Y 2017 Int. J. Optomechatron. 11 47
[21] Lin Z, Liang X, Loncar M, Johnson S G and Rodriguez A W 2016 Optica 3 233
[22] Lin J T, Xu Y X, Ni J L, Wang M, Fang Z W, Qiao L L, Fang W and Cheng Y 2016 Phys. Rev. Appl. 6 014002
[23] Guo X, Zou C L and Tang H X 2016 Optica 3 1126
[24] Guo X, Zou C L, Jung H and Tang H X 2016 Phys. Rev. Lett. 117 123902
[25] Kuo P S, Bravo-Abad J and Solomon G S 2014 Nat. Commun. 5 4109
[26] Buckley S, Radulaski M, Biermann K and Vukovi J 2013 Appl. Phys. Lett. 103 211117
[27] Pernice W, Xiong C, Schuck C and Tang H X 2012 Appl. Phys. Lett. 100 153901
[28] Levy J S, Foster M A, Gaeta A L and Lipson M 2011 Opt. Express 19 11415
[29] Wang L, Zhang X Q and Chen F 2021 Laser Photon. Rev. 15 2100409
[30] Luo R, He Y, Liang H, Li M and Lin Q 2019 Laser Photon. Rev. 13 1800288
[31] Yu Z J, Xi X, Ma J W, Tsang H K and Sun X K 2019 Optica 6 1342
[32] Zou C L, Cui J M, Sun F W, Xiong X, Zou X B, Han Z F and Guo G C 2015 Laser Photon. Rev. 9 114
[33] Yu Y, Yu Z J, Wang L and Sun X K 2021 Adv. Opt. Mater. 9 2100060
[34] Fang B, Gao S L, Wang Z Z, Zhu S N and Li T 2021 Chin. Opt. Lett. 19 060004
[35] Haus H A, Huang W P and Snyder A W 1989 Opt. Lett. 14 1222
[36] Kapon E, Katz J and Yariv A 1984 Opt. Lett. 9 125
[37] Snyder A W and Young W R 1978 J. Opt. Soc. Am. 68 297
[38] Liu B D, Yu H K, Li Z Y and Tong L M 2019 J. Opt. Soc. Am. B - Opt. Phys. 36 2650
[39] Dong P, Upham J, Jugessur A and Kirk A G 2006 Opt. Express 14 2256
[40] Dong P and Kirk A G 2004 Phys. Rev. Lett. 93 133901
[41] Luo R, He Y, Liang H X, Li M X and Lin Q 2018 Optica 5 1006
[42] Zhu C Y, Chen Y P, Li G Z, Ge L C, Zhu B, Hu M N and Chen X F 2017 Chin. Opt. Lett. 15 091901
[1] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[2] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[3] Photon-interactions with perovskite oxides
Hongbao Yao(姚洪宝), Er-Jia Guo(郭尔佳), Chen Ge(葛琛), Can Wang(王灿), Guozhen Yang(杨国桢), and Kuijuan Jin(金奎娟). Chin. Phys. B, 2022, 31(8): 088106.
[4] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[5] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[6] Phase matched scanning optical parametric chirped pulse amplification based on pump beam deflection
Rong Ye(叶荣), Huining Dong(董会宁), Xianyun Wu(吴显云), and Xiang Gao(高翔). Chin. Phys. B, 2021, 30(10): 104209.
[7] Broadband and efficient second harmonic generation in LiNbO3-LiTaO3 composite ridge waveguides at telecom-band
Xin-Tong Zhang(张欣桐). Chin. Phys. B, 2021, 30(1): 014205.
[8] A two-mode squeezed light based on a double-pump phase-matching geometry
Xuan-Jian He(何烜坚), Jun Jia(贾俊), Gao-Feng Jiao(焦高锋), Li-Qing Chen(陈丽清), Chun-Hua Yuan(袁春华), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2020, 29(7): 074207.
[9] Effect of dark soliton on the spectral evolution of bright soliton in a silicon-on-insulator waveguide
Zhen Liu(刘振), Wei-Guo Jia(贾维国), Hong-Yu Wang(王红玉), Yang Wang(汪洋), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(6): 064212.
[10] Geometrical optics-based ray field tracing method for complex source beam applications
Min Gao(高敏), Feng Yang(杨峰), Xue-Wu Cui(崔学武), Rui Wang(王瑞). Chin. Phys. B, 2018, 27(4): 040401.
[11] Generation of 15 W femtosecond laser pulse from a Kerr-lens mode-locked Yb: YAG thin-disk oscillator
Yingnan Peng(彭英楠), Jinwei Zhang(张金伟), Zhaohua Wang(王兆华), Jiangfeng Zhu(朱江峰), Dehua Li(李德华), Zhiyi Wei(魏志义). Chin. Phys. B, 2016, 25(9): 094207.
[12] Second harmonic generation of metal nanoparticles under tightly focused illumination
Jing-Wei Sun(孙经纬), Xiang-Hui Wang(王湘晖), Sheng-Jiang Chang(常胜江),Ming Zeng(曾明), Na Zhang(张娜). Chin. Phys. B, 2016, 25(3): 037803.
[13] Generation of femtosecond laser pulses at 396 nm in K3B6O10Cl crystal
Ning-Hua Zhang(张宁华), Hao Teng(滕浩), Hang-Dong Huang(黄杭东), Wen-Long Tian(田文龙), Jiang-Feng Zhu(朱江峰), Hong-Ping Wu(吴红萍), Shi-Lie Pan(潘世烈), Shao-Bo Fang(方少波), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(12): 124204.
[14] Tunable femtosecond near-infrared source based on a Yb:LYSO-laser-pumped optical parametric oscillator
Wen-Long Tian(田文龙), Zhao-Hua Wang(王兆华), Jiang-Feng Zhu(朱江峰), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(1): 014207.
[15] Dynamics of optical rogue waves in inhomogeneous nonlinear waveguides
Zhang Jie-Fang (张解放), Jin Mei-Zhen (金美贞), He Ji-Da (何纪达), Lou Ji-Hui (楼吉辉), Dai Chao-Qing (戴朝卿). Chin. Phys. B, 2013, 22(5): 054208.
No Suggested Reading articles found!