CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
First-principles investigation on ideal strength of B2 NiAl and NiTi alloys |
Chun-Yao Zhang(张春尧), Fu-Yang Tian(田付阳), Xiao-Dong Ni(倪晓东) |
Institute for Applied Physics, University of Science and Technology Beijing, Beijing 100083, China |
|
|
Abstract For B2 NiAl and NiTi intermetallic compounds, the ideal stress-strain image is lack from the perspective of elastic constants. We use first-principles calculation to investigate the ideal strength and elastic behavior under the tensile and shear loads. The relation between the ideal strength and elastic constants is found. The uniaxial tension of NiAl and NiTi along <001> crystal direction leads to the change from tetragonal path to orthogonal path, which is driven by the vanishing of the shear constant C66. The shear failure under {110}<111> shear deformation occurring in process of tension may result in a small ideal tensile strength (~2 GPa) for NiTi. The unlikeness in the ideal strength of NiAl and NiTi alloys is discussed based on the charge density difference.
|
Received: 07 August 2019
Revised: 30 December 2019
Accepted manuscript online:
|
PACS:
|
62.20.de
|
(Elastic moduli)
|
|
64.70.qd
|
(Thermodynamics and statistical mechanics)
|
|
74.20.Pq
|
(Electronic structure calculations)
|
|
Fund: Project supported by the Science Challenge Project, China (Grant No. TZ2018002) and the Fundamental Research Funds for the Central Universities, China (Grant No. FRF-TP-18-013A3). |
Corresponding Authors:
Fu-Yang Tian, Xiao-Dong Ni
E-mail: fuyang@ustb.edu.cn;nixiaodong@ustb.edu.cn
|
Cite this article:
Chun-Yao Zhang(张春尧), Fu-Yang Tian(田付阳), Xiao-Dong Ni(倪晓东) First-principles investigation on ideal strength of B2 NiAl and NiTi alloys 2020 Chin. Phys. B 29 036201
|
[1] |
Raynolds J E, Smith J R, Zhao G L and Srolovitz D J 1996 Phys. Rev. B 53 13883
|
[2] |
Zhang X Y, Sprengel W, Reichle K J, Blaurock K, Henes R and Schaefer H E 2003 Phys. Rev. B 68 224102
|
[3] |
Korzhavyi P A, Ruban A V, Lozovoi A Y, Vekilov Y K, Abrikosov I A and Johansson B 2000 Phys. Rev. B 61 6003
|
[4] |
Lui S C, Davenport J W, Plummer E W, Zehner D M and Fernando G W 1990 Phys. Rev. B 42 1582
|
[5] |
Casalena L, Bigelow G S, Gao Y, Benafan O, Noebe R D, Wang Y and Mills M J 2017 Intermetallics 86 33
|
[6] |
Hansen K H, Gottschalck J, Petersen L, Hammer B, Laegsgaard E, Besenbacher F and Stensgaard I 2001 Phys. Rev. B 63 115421
|
[7] |
Mishin Y, Mehl M J and Papaconstantopoulos D A 2002 Phys. Rev. B 65 224114
|
[8] |
Hatcher N, Kontsevoi O Y and Freeman A J 2009 Phys. Rev. B 80 144203
|
[9] |
Zarkevich N A and Johnson D D 2014 Phys. Rev. B 90 060102
|
[10] |
Chen Z, Qin S, Shang J, Wang F and Chen Y 2018 Intermetallics 94 47
|
[11] |
Mahmud A, Wu Z, Zhang J, Liu Y and Yang H 2018 Intermetallics 103 52
|
[12] |
Xing H, Dong A, Huang J, Zhang J and Sun B 2018 J. Mater. Sci. & Technol. 34 620
|
[13] |
Lazar P and Podloucky R 2009 Intermetallics 17 675
|
[14] |
Lazar P and Podloucky R 2006 Phys. Rev. B 73 104114
|
[15] |
Lu J M, Hu Q M and Yang R 2009 J. Mater. Sci. & Technol. 25 215
|
[16] |
Tanaka K and Koiwa M 1996 Intermetallics 4 S29
|
[17] |
Jamal M, Jalali Asadabadi S, Ahmad I and Rahnamaye Aliabad H A 2014 Comput. Mater. Sci. 95 592
|
[18] |
Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104
|
[19] |
Zhang N N, Zhang Y J, Yang Y, Zhang P and Ge C C 2019 Chin. Phys. B 28 046301
|
[20] |
He X and Li J B 2019 Chin. Phys. B 28 037301
|
[21] |
Wu J H and Liu C X 2016 Chin. Phys. Lett. 33 036202
|
[22] |
Lei B, Zhang Y Y and Du S X 2019 Chin. Phys. B 28 046803
|
[23] |
Wang F N, Li J C, Li Y, Zhang X M, Wang X J, Chen Y F, Liu J, Wang C L, Zhao M L and Mei L M 2019 Chin. Phys. B 28 047101
|
[24] |
Jhi S H, Louie S G, Cohen M L and Morris J W Jr 2001 Phys. Rev. Lett. 87 075503
|
[25] |
Nagasako N, Asahi R and Hafner J 2012 Phys. Rev. B 85 024122
|
[26] |
Li T, Morris J W, Jr., Nagasako N, Kuramoto S and Chrzan D C 2007 Phys. Rev. Lett. 98 105503
|
[27] |
Nagasako N, Jahnátek M, Asahi R and Hafner J 2010 Phys. Rev. B 81 094108
|
[28] |
Qi L and Chrzan D C 2014 Phys. Rev. Lett. 112 115503
|
[29] |
Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys-Condens Mat 14 2717
|
[30] |
Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
|
[31] |
Hohenberg P and Kohn W 1964 Phys. Rev. B 136 B864
|
[32] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[33] |
Vanderbilt D 1990 Phys. Rev. B 41 7892
|
[34] |
Wisesa P, McGill K A and Mueller T 2016 Phys. Rev. B 93 155109
|
[35] |
Güler M and Güler E 2013 Chin. Phys. Lett. 30 056201
|
[36] |
Chen Z, Fei P and Zhou Y 1995 Acta Math. Sci. 15 283
|
[37] |
Hill R 1952 Proc. Phys. Soc. A 65 349
|
[38] |
Davenport T, Zhou L and Trivisonno J 1999 Phys. Rev. B 59 3421
|
[39] |
Hosoda H and Inamura T 2009 Shape Memory Alloys for Biomedical Applications (New York: CRC Press) pp. 20-36
|
[40] |
Li X, Schönecker S, Li W, Varga L K, Irving D L and Vitos L 2018 Phys. Rev. B 97 094102
|
[41] |
Sanati M, Albers R C and Pinski F J 1998 Phys. Rev. B 58 13590
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|