|
|
HfN2 monolayer: A new direct-gap semiconductor with high and anisotropic carrier mobility |
Yuan Sun(孙源)1, Bin Xu(徐斌)2, Lin Yi(易林)3 |
1 School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052, China; 2 School of Physics and Electronics, North China University of Water Resources and Electric Power, Zhengzhou 450011, China; 3 Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
Abstract Searching for two-dimensional (2D) stable materials with direct band gap and high carrier mobility has attracted great attention for their electronic device applications. Using the first principles calculations and particle swarm optimization (PSO) method, we predict a new 2D stable material (HfN2 monolayer) with the global minimum of 2D space. The HfN2 monolayer possesses direct band gap (~1.46 eV) and it is predicted to have high carrier mobilities (~103 cm2·V-1·s-1) from deformation potential theory. The direct band gap can be well maintained and flexibly modulated by applying an easily external strain under the strain conditions. In addition, the newly predicted HfN2 monolayer possesses good thermal, dynamical, and mechanical stabilities, which are verified by ab initio molecular dynamics simulations, phonon dispersion and elastic constants. These results demonstrate that HfN2 monolayer is a promising candidate in future microelectronic devices.
|
Received: 05 November 2019
Revised: 08 December 2019
Accepted manuscript online:
|
PACS:
|
31.15.A-
|
(Ab initio calculations)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
68.55.ag
|
(Semiconductors)
|
|
Fund: Project supported by the National Natural Science Foundation (Grant No. U1404108), the Innovative Talents of Universities in Henan Province of China (Grant No. 17HASTIT013), the Basic and Frontier Technology Research Program of Henan Province of China (Grant No. 162300410056), and the Key Scientific Research Projects of Higher Institutions in Henan Province of China (Grant No. 19A140018). |
Corresponding Authors:
Yuan Sun, Bin Xu
E-mail: yuansun44@163.com;hnsqxb@163.com
|
Cite this article:
Yuan Sun(孙源), Bin Xu(徐斌), Lin Yi(易林) HfN2 monolayer: A new direct-gap semiconductor with high and anisotropic carrier mobility 2020 Chin. Phys. B 29 023102
|
[1] |
Xie M, Zhang S, Cai B, Zhu Z, Zou Y and Zeng H 2016 Nanoscale 8 13407
|
[2] |
Wang B, Niu X, Ouyang Y, Zhou Q and Wang J 2018 J. Phys. Chem. Lett. 9 487
|
[3] |
Zhang C and Sun Q 2016 J. Phys. Chem. Lett. 7 2664
|
[4] |
Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451
|
[5] |
Li F, Liu X, Wang Y and Li Y 2016 J. Mater. Chem. C 4 2155
|
[6] |
Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
|
[7] |
Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotech. 6 147
|
[8] |
Zhou Q, Chen Q, Tong Y and Wang J 2016 Angew. Chem. Int. Ed. Engl. 55 11437
|
[9] |
Yu J, Wang L, Hao Z, Luo Y, Sun C, Wang J, Han Y, Xiong B and Li H 2019 Adv. Mater. 2019 1903407
|
[10] |
Li F, Wang Y, Wu H, Liu Z, Aeberhard U and Li Y 2017 J. Mater. Chem. C 5 11515
|
[11] |
Xiao X, Urbankowski P, Hantanasirisakul K, Yang Y, Sasaki S, Yang L, Chen C, Wang H, Miao L, Tolbert S H, Billinge S J L, Abruña H D, May S J and Gogotsi Y 2019 Adv. Funct. Mater. 29 1809001
|
[12] |
Wang B, Wu Q, Zhang Y, Ma L and Wang J 2019 ACS Appl. Mater. Inter. 11 33231
|
[13] |
Wei Y, Ma Y, Wei W, Li M, Huang B and Dai Y 2018 J. Phys. Chem. C 122 8102
|
[14] |
Frey N C, Kumar H, Anasori B, Gogotsi Y and Shenoy V B 2018 ACS Nano 12 6319
|
[15] |
Zhao W J and Xu B 2012 Comput. Mater. Sci. 65 372
|
[16] |
Zhang C, Liu J, Shen H, Li X Z and Sun Q 2017 Chem. Mater. 29 8588
|
[17] |
Gong S, Zhang C, Wang S and Wang Q 2017 J. Phys. Chem. C 121 10258
|
[18] |
Wu F, Huang C, Wu H, Lee C, Deng K, Kan E and Jena P 2015 Nano Lett. 15 8277
|
[19] |
Li J, Gao G, Min Y and Yao K 2016 Phys. Chem. Chem. Phys. 18 28018
|
[20] |
Liu Z, Liu J and Zhao J 2017 Nano Res. 10 1972
|
[21] |
Liu J, Liu Z, Song T and Cui X 2017 J. Mater. Chem. C 5 727
|
[22] |
Anand S, Thekkepat K and Waghmare U V 2015 Nano Lett. 16 126
|
[23] |
Zhou L, Zhuo Z, Kou L, Du A and Tretiak S 2017 Nano Lett. 17 4466
|
[24] |
Chae S H, Jin Y, Kim T S, Chung D S, Na H, Nam H, Kim H, Perello D J, Jeong H Y, Ly T H and Lee Y H 2016 ACS Nano 10 1309
|
[25] |
Zhang J, Jiang R, Tuo Y, Yao T and Zhang D 2019 Acta Phys. Pol. A 135 546
|
[26] |
Takeyama M B, Sato M, Aoyagi E and Noya A 2014 Jpn. J. Appl. Phys. 53 02BC05
|
[27] |
Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063
|
[28] |
Zhang H, Li Y, Hou J, Du A and Chen Z 2016 Nano Lett. 16 6124
|
[29] |
Wang B, Yuan S, Li Y, Shi L and Wang J 2017 Nanoscale 9 5577
|
[30] |
Yin H, Liu C, Zheng G P, Wang Y and Ren F 2019 Appl. Phys. Lett. 114 192903
|
[31] |
Wang B, Zhang Y, Ma L, Wu Q, Guo Y, Zhang X and Wang J 2019 Nanoscale 11 4204
|
[32] |
Luo X, Yang J, Liu H, Wu X, Wang Y, Ma Y, Wei S H, Gong X and Xiang H 2011 J. Am. Chem. Soc. 133 16285
|
[33] |
Gu T, Luo W and Xiang H 2017 WIREs: Comput. Mol. Sci. 7 e1295
|
[34] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[35] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[36] |
Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
|
[37] |
Baroni S, de Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
|
[38] |
Martyna G J, Klein M L and Tuckerman M 1992 J. Chem. Phys. 97 2635
|
[39] |
Cai Y, Zhang G and Zhang Y W 2014 J. Am. Chem. Soc. 136 6269
|
[40] |
MolinaS ánchez A and Wirtz L 2011 Phys. Rev. B 84 155413
|
[41] |
Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385
|
[42] |
Zhang H and Wang R 2011 Physica B 406 4080
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|