Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 024204    DOI: 10.1088/1674-1056/ac2d20
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High-sensitive terahertz detection by parametric up-conversion using nanosecond pulsed laser

Yuye Wang(王与烨)1,2, Gang Nie(聂港)1,2, Changhao Hu(胡常灏)1,2, Kai Chen(陈锴)1,2, Chao Yan(闫超)1,2, Bin Wu(吴斌)3, Junfeng Zhu(朱军峰)3, Degang Xu(徐德刚)1,2,†, and Jianquan Yao(姚建铨)1,2
1 Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China;
2 Key Laboratory of Optoelectronic Information Technology(Ministry of Education), Tianjin University, Tianjin 300072, China;
3 Science and Technology on Electronic Test & Measurement Laboratory, Qingdao 266555, China
Abstract  A high-sensitive terahertz detector operating at room temperature was demonstrated based on parametric up-conversion. A nanosecond 1064-nm Nd:YAG laser was used to pump the parametric up-conversion detector and the up-conversion from terahertz wave to NIR laser was realized in a lithium niobate crystal. The minimum detectable terahertz energy of 9 pJ was realized with the detection dynamic range of 54 dB, which was three orders of magnitude higher than that of commercial Golay cell. The detectable terahertz frequency range of the detection system was 0.90 Thz-1.83 THz. Besides, the effects of pump energy and effective gain length on the detection sensitivity were studied in experiment. The results showed that higher pump energy and longer effective gain length are helpful for improving the detection sensitivity of parametric up-conversion detector.
Keywords:  terahertz wave      high-sensitive detection      room temperature operation      parametric up-conversion  
Received:  18 August 2021      Revised:  16 September 2021      Accepted manuscript online:  06 October 2021
PACS:  42.65.Dr (Stimulated Raman scattering; CARS)  
  87.50.U-  
  42.65.-k (Nonlinear optics)  
  42.60.-v (Laser optical systems: design and operation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1837202, 61775160, 61771332, 62011540006, and 62175182).
Corresponding Authors:  Degang Xu     E-mail:  xudegang@tju.edu.cn

Cite this article: 

Yuye Wang(王与烨), Gang Nie(聂港), Changhao Hu(胡常灏), Kai Chen(陈锴), Chao Yan(闫超), Bin Wu(吴斌), Junfeng Zhu(朱军峰), Degang Xu(徐德刚), and Jianquan Yao(姚建铨) High-sensitive terahertz detection by parametric up-conversion using nanosecond pulsed laser 2022 Chin. Phys. B 31 024204

[1] Elayan H, Amin O, Shubair R M, Yevgeni Koucheryavy Y 2018 International Conference on Advanced Communication Technologies and Networking, April 2-4, 2018, Marrakech, Morocco, p. 1
[2] Taylor Z D, Singh R S, Culjat M O and Culjat J 2008 Opt. Lett. 33 1258
[3] Davies A G, Burnett A D, Fan W H, Linfield E H and Cunningham J E 2008 Mater. Today 11 18
[4] Pawar A Y, Sonawane D D, Erande K B and Derle D V 2013 Drug Invent. Today 5 157
[5] Wu Q and Zhang X C 1995 Appl. Phys. Lett. 67 3523
[6] Wu B, Cao L, Zhang Z, Fu Q and Xiong Y Q 2018 IEEE Trans. Terahertz Sci. Technol. 8 305
[7] Kampfrath T, Nötzold J and Wolf M 2007 Appl. Phys. Lett. 90 231113
[8] Babin A A, Petryakov V N and Freidman G I 1983 Sov. J. Quantum Electron. 13 958
[9] Kong W P, Yan Q, Li Z Y, Zou M R, Zhou X and Qin Y 2020 IEEE Trans. Terahertz Sci. Technol. 11 389
[10] Mine S, Kawase K and Murate K 2021 Opt. Lett. 46 2618
[11] Shi J L, Xu J, Luo N N, Wang Q, Zhang Y B, Zhang W W and He X D 2019 Acta Phys. Sin. 68 044201 (in Chinese)
[12] Faris G W, Jusinski L E and Hickman A P 1993 J. Opt. Soc. Am. B 10 587
[13] Faris G W, Dyer M J and Hickman A P 1992 Opt. Lett. 17 1049
[14] Sentrayan K and Kushawaha V 1993 J. Phys. D:Appl. Phys. 26 1554
[15] Minamide H, Hayashi S, Nawata K, Taira T, Shikata J I and Kawase K 2014 J. Infrared, Millimeter, Terahertz Waves 35 25
[16] Hayashi S I, Nawata K, Taira T, Shikata J I, Kawase K and Minamide H 2014 Sci. Rep. 4 1
[17] Kato M, Tripathi S R, Murate K, Imayama K and Kawase K 2016 Opt. Express 24 6425
[18] Sakai H, Kawase K and Murate K 2020 Opt. Lett. 45 3905
[19] Takida Y, Nawata K, Suzuki S, Asada M and Minamide H 2017 Opt. Express 25 5389
[20] Takida Y, Nawata K, Suzuki S, Asada M and Minamide H 2017 AIP Adv. 7 035020
[21] Yan C, Wang Y Y, Xu D G, Xu W T, Liu P X, Yan D X, Duan P, Zhong K, Shi W and Yao J Q 2016 Appl. Phys. Lett. 108 011107
[22] Wang Y Y, Tang L H, Xu D G, Yan C, He Y X, Shi J, Yan D X, Liu H X, Nie M T, Feng J C and Yao J Q 2017 Opt. Express 25 8926
[23] Tang L H, Xu D G, Wang Y Y, Yan C, He Y X, Li J N, Zhong K and Yao J Q 2019 Opt. Express 27 22808
[24] Guo R X, Ohno S, Minamide H, Ikari T and Ito H 2008 Appl. Phys. Lett. 93 021106
[25] Guo R X, Ikar T, Zhang J, Minamide H and Ito H 2010 Opt. Lett. 18 16430
[26] Shikata J I, Kawase K, Karino K I, Taniuchi T and Ito H 2000 IEEE Trans. Microwave Theory Tech. 48 653
[1] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[2] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[3] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
[4] Switchable vortex beam polarization state terahertz multi-layer metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(11): 114201.
[5] High-efficiency terahertz wave generation with multiple frequencies by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Binzhe Jiao(焦彬哲), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Gege Zhang(张格格), Qianze Yan(颜钤泽), Pibin Bing(邴丕彬), Fengrui Zhang(张风蕊), Zhan Wang(王湛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(4): 044211.
[6] Theoretical research on terahertz wave generation from planar waveguide by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Jia Zhao(赵佳), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Yongjun Li(李永军), Binzhe Jiao(焦彬哲), Pibin Bing(邴丕彬), Hongtao Zhang(张红涛), Lian Tan(谭联), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(2): 024209.
[7] Active metasurfaces for manipulatable terahertz technology
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2020, 29(9): 094202.
[8] Polarization conversion metasurface in terahertz region
Chen Zhou(周晨), Jiu-Sheng Li(李九生). Chin. Phys. B, 2020, 29(7): 078706.
[9] Single-shot measurement of THz pulses
Lei Yang(杨磊), Lei Hou(侯磊), Chengang Dong(董陈岗), Wei Shi(施卫). Chin. Phys. B, 2020, 29(5): 057803.
[10] Propagation characteristics of oblique incidence terahertz wave through non-uniform plasma
Antao Chen(陈安涛), Haoyu Sun(孙浩宇), Yiping Han(韩一平), Jiajie Wang(汪加洁), Zhiwei Cui(崔志伟). Chin. Phys. B, 2019, 28(1): 014201.
[11] Ultra-compact terahertz switch with graphene ring resonators
Jian-Zhong Sun(孙建忠), Le Zhang(章乐), Fei Gao(高飞). Chin. Phys. B, 2016, 25(10): 108701.
[12] Design and optimization of terahertz directional coupler based on hybrid-cladding hollow waveguide with low confinement loss
Yu Ying-Ying (于莹莹), Li Xu-You (李绪友), Sun Bo (孙波), He Kun-Peng (何昆鹏). Chin. Phys. B, 2015, 24(6): 068702.
[13] Realization of a broadband terahertz wavelength-selective coupling based on five-core fibers
Li Xu-You (李绪友), Yu Ying-Ying (于莹莹), Sun Bo (孙波), He Kun-Peng (何昆鹏). Chin. Phys. B, 2014, 23(8): 088701.
[14] Low-loss terahertz waveguide with InAs-graphene-SiC structure
Xu De-Gang (徐德刚), Wang Yu-Ye (王与烨), Yu Hong (于红), Li Jia-Qi (李佳起), Li Zhong-Xiao (李忠孝), Yan Chao (闫超), Zhang Hao (张昊), Liu Peng-Xiang (刘鹏翔), Zhong Kai (钟凯), Wang Wei-Peng (王卫鹏), Yao Jian-Quan (姚建铨). Chin. Phys. B, 2014, 23(5): 054210.
[15] High performance oscillator with 2-mW output power at 300 GHz
Wu De-Qi (武德起), Ding Wu-Chang (丁武昌), Yang Shan-Shan (杨姗姗), Jia Rui (贾锐), Jin Zhi (金智), Liu Xin-Yu (刘新宇). Chin. Phys. B, 2014, 23(5): 057204.
No Suggested Reading articles found!