INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Photoelectrocatalytic oxidation of methane into methanol and formic acid over ZnO/graphene/polyaniline catalyst |
Jia Liu(刘佳), Ying-Hua Zhang(张英华), Zhi-Ming Bai(白智明), Zhi-An Huang(黄志安), Yu-Kun Gao(高玉坤) |
School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China |
|
|
Abstract ZnO/graphene/polyaniline (PANI) composite is synthesized and used for photoelectrocatalytic oxidation of methane under simulated sun light illumination with ambient conditions. The photoelectrochemical (PEC) performance of pure ZnO, ZnO/graphene, ZnO/PANI, and ZnO/graphene/PANI photoanodes is investigated by cyclic voltammetry (CV), chronoamerometry (J-t) and electrochemical impedance spectroscopy (EIS). The yields of methane oxidation products, mainly methanol (CH3OH) and formic acid (HCOOH), catalysed by the synthesized ZnO/graphene/PANI composite are 2.76 and 3.20 times those of pure ZnO, respectively. The mechanism of the photoelectrocatalytic process converting methane into methanol and formic acid is proposed on the basis of the experimental results. The enhanced photoelectrocatalytic activity of the ZnO/graphene/PANI composite can be attributed to the fact that graphene can efficiently transfer photo-generated electrons from the inner region to the surface reaction to form free radicals due to its superior electrical conductivity as an inter-media layer. Meanwhile, the introduction of PANI promotes solar energy harvesting by extending the visible light absorption and enhances charge separation efficiency due to its conducting polymer characteristics. In addition, the PANI can create a favorable π-conjunction structure together with graphene layers, which can achieve a more effective charge separation. This research demonstrates that the fabricated ZnO/graphene/PANI composite promises to implement the visible-light photoelectrocatalytic methane oxidation.
|
Received: 16 October 2018
Revised: 10 January 2019
Accepted manuscript online:
|
PACS:
|
81.05.Dz
|
(II-VI semiconductors)
|
|
81.05.Fb
|
(Organic semiconductors)
|
|
81.05.ue
|
(Graphene)
|
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51602021 and 51474017) and the Fundamental Research Funds for the Central Universities (Grant No. FRF-TP-15-107A1). |
Corresponding Authors:
Zhi-Ming Bai
E-mail: baizhiming2008@126.com
|
Cite this article:
Jia Liu(刘佳), Ying-Hua Zhang(张英华), Zhi-Ming Bai(白智明), Zhi-An Huang(黄志安), Yu-Kun Gao(高玉坤) Photoelectrocatalytic oxidation of methane into methanol and formic acid over ZnO/graphene/polyaniline catalyst 2019 Chin. Phys. B 28 048101
|
[1] |
Crabtree R H 1995 Chem. Rev. 95 987
|
[2] |
Cao M K, Gregson K and Marshall S 1998 Atmos. Environ. 32 3293
|
[3] |
Ruppel C D 2011 Nat. Educ. Knowl. 3 29
|
[4] |
Howarth R W, Santoro R and Ingraffea A 2011 Climatic Change 106 679
|
[5] |
Hammond C, Forde M M, Rahim A, Hasbi M, Thetford A, He Q, Jenkins R L, Dimitratos N, Lopez-Sanchez J A and Dummer N F 2012 Angew. Chem. Int. Ed. 51 5129
|
[6] |
Zhang Q J, He D H and Zhu Q M 2008 J. Nat. Gas Chem. 17 24
|
[7] |
Alvarez-Galvan M C, Mota N, Ojeda M, Rojas S, Navarro R M and Fierro J L G 2011 Catal. Today 171 15
|
[8] |
Sustersic M G, Córdova O R, Triaca W E and Arvía A J 1980 J. Electrochem. Soc. 127 1242
|
[9] |
Qiao J, Tang S N, Tian Y N, Shuang S M, Dong C and Choi M M F 2009 Sens. Actuators B: Chem. 138 402
|
[10] |
Jafarian M, Mahjani M G, Heli H, Gobal F and Heydarpoor M 2003 Electrochem. Commun. 5 184
|
[11] |
Joglekar M, Nguyen V, Pylypenko S, Ngo C, Li Q, O'Reilly M E, Gray T S, Hubbard W A, Gunnoe T B, Herring A M and Trewyn B G 2016 J. Am. Chem. Soc. 138 116
|
[12] |
Dong F, Ou M Y, Jiang Y K, Guo S and Wu Z B 2014 Ind. & Eng. Chem. Res. 53 2318
|
[13] |
Nischk M, Mazierski P, Gazda M and Zaleska A 2014 Appl. Catal. B: Environ. 144 674
|
[14] |
Naldoni A, Bianchi C L, Pirola C and Suslick K S 2013 Ultrason. Sonochem. 20 445
|
[15] |
Hameed A, Ismail I M I, Aslam M and Gondal M A 2014 Appl. Catal. A: Gen. 470 327
|
[16] |
Gondal M A, Hameed A and Suwaiyan A 2003 Appl. Catal. A: Gen. 243 165
|
[17] |
Gondal M A, Hameed A, Yamani Z H and Arfaj A 2004 Chem. Phys. Lett. 392 372
|
[18] |
Chen X X, Li Y P, Pan X Y, Cortie D, Huang X T and Yi Z G 2016 Nat Commun. 7 12273
|
[19] |
Hu Y, Nagai Y, Rahmawaty D, Wei C H and Anpo M 2008 Catal. Lett. 124 80
|
[20] |
Wahl A, Ulmann M, Carroy A, Jermann B, Dolata M, Kedzierzawski P, Chatelain C, Monnier A and Augustynski J 1995 J. Electroanal. Chem. 396 41
|
[21] |
Georgieva J, Valova E, Armyanov S, Philippidis N, Poulios I and Sotiropoulos S 2012 J. Hazard. Mater. 211-212 30
|
[22] |
Fraga L E, Anderson M A, Beatriz M L P M A, Paschoal F M M, Romão L P and Zanoni M V B 2009 Electrochim. Acta 54 2069
|
[23] |
Orak I, Kocyigit A and Alindal S 2017 Chin. Phys. B 26 028102
|
[24] |
Yang T Y, Kong C Y, Ruan H B, Qin G P, Li W J, Liang W W, Meng X D, Zhao Y H, Fang L and Cui Y T 2012 Acta Phys. Sin. 61 168101 (in Chinese)
|
[25] |
Jin Y P, Zhang B, Wang J Z and Shi L Q 2016 Chin. Phys. Lett. 33 058101
|
[26] |
Yang X Y, Cheng J Y, Li B, Cao W Q, Yuan J, Zhang D Q and Cao M S 2012 Chin. Phys. Lett. 29 108101
|
[27] |
Wang Y J, Shi R, Lin J and Zhu Y F 2011 Energy & Environ. Sci. 4 2922
|
[28] |
Bai X J, Wang L, Zong R L, Lv Y H, Sun Y Q and Zhu Y F 2013 Langmuir Acs J. Surf. & Colloids 29 3097
|
[29] |
Wu Y N, Wu D C, Dong C J, Zhang P P, Ji H X and He L 2011 Acta Phys. Sin. 60 77505 (in Chinese)
|
[30] |
Zhong W W, L F M, Cai L G, Ding P, Liu X Q and Li Y 2011 Acta Phys. Sin. 60 118102 (in Chinese)
|
[31] |
Wu Z H and Duan W Q 2012 Acta Phys. Sin. 61 137502 (in Chinese)
|
[32] |
Chen H M, Chen C K, Chang Y C, Tsai C W, Liu R S, Hu S F, Chang W S and Chen K H 2010 Angew. Chem. 122 6102
|
[33] |
Wang G, Yang X, Qian F, Zhang J Z and Li Y 2010 Nano Lett. 10 1088
|
[34] |
Shao M F, Ning F Y, Wei M, Evans D G and Xue D 2014 Adv. Funct. Mater. 24 580
|
[35] |
Singh N S, Kumar L, Kumar A, Vaisakh S, Singh S D, Sisodiya K, Srivastava S, Kansal M, Rawat S, Singh T A, Tanya and Anita 2017 Mater. Sci. Semicond. Process. 60 29
|
[36] |
Bai Z M, Yan X Q, Kang Z, Hu Y P, Zhang X H and Zhang Y 2015 Nano Energy 14 392
|
[37] |
Xu T G, Zhang L W, Cheng H Y and Zhu Y F 2011 Appl. Catal. B Environ. 101 382
|
[38] |
Fu C, He D W, Wang Y S, Fu M, Geng X and Zhuo Z L 2015 Chin. Phys. B 24 87801
|
[39] |
Zhang L L, Huang D, Hu N T, Yang C, Li M, Wei H, Yang Z, Su Y J and Zhang Y F 2017 J. Power Sources 342 1
|
[40] |
Fan S N, Liu R W, Ma R S, Yu S S, Li M, Zheng W T and Hu S X 2017 Chin. Phys. B 26 048102
|
[41] |
Nsib M F, Saafi S, Rayes A, Moussa N and Houas A 2016 J. Energy Inst. 89 694
|
[42] |
Anjum M, Oves M, Kumar R and Barakat M A 2017 Int. Biodeterioration & Biodegradation 119 66
|
[43] |
Li Z H, Feng S L, Liu S Y, Li X, Wang L and Lu W Q 2015 Nanoscale 7 19178
|
[44] |
Weng B, Yang M Q, Zhang N and Xu Y J 2014 J. Mater. Chem. A 2 9380
|
[45] |
Jing L, Yang Z Y, Zhao Y F, Zhang Y X, Guo X, Yan Y M and Sun K N 2014 J. Mater. Chem. A 2 1068
|
[46] |
Singh J, Bhondekar A P, Singla M L and Sharma A 2013 ACS Appl. Mater. & Interfaces 5 5346
|
[47] |
Gasteiger H A, Markovic N, Jr P N R and Cairns E J 1994 J. Phys. Chem. 9746 326
|
[48] |
Hahn F and Melendres C A 2001 Electrochim. Acta 46 3525
|
[49] |
Sustersic M G 1980 J. Electrochem. Soc. 127 1242
|
[50] |
Koppenol W H and Liebman J F 1984 J. Phys. Chem. 88 99
|
[51] |
Chen X X, Huang X T and Yi Z G 2014 Chemistry 20 17590
|
[52] |
Wood P M 1988 Biochem. J. 253 287
|
[53] |
Xu C W, Cheng L Q, Shen P K and Liu Y L 2007 Electrochem. Commun. 9 997
|
[54] |
Chen S, Zhu J W and Wang X 2010 J. Phys. Chem. C 114 11829
|
[55] |
Sawangphruk M and Kaewsongpol T 2012 Mater. Lett. 87 142
|
[56] |
Tang Y H, Wu N, Luo S L, Liu C B, Wang K and Chen L Y 2012 Macromol. Rapid Commun. 33 1780
|
[57] |
Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Norskov J K and Jaramillo T F 2017 Science 355 eaad4998
|
[58] |
Wang Z Q, Liu Z A, Du G, Asiri A M, Wang L, Li X N, Wang H J, Sun X P, Chen L and Zhang Q J 2018 Chem. Commun. 54 7
|
[59] |
Zhang H B, Yu L, Chen T, Zhou W and Lou X W 2018 Adv. Funct. Mater. 201807086
|
[60] |
Yuliati L and Yoshida H 2008 Chem. Soc. Rev. 37 1592
|
[61] |
Taylor C and Noceti R 2000 Catal. Today 55 259
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|