Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 110304    DOI: 10.1088/1674-1056/ab44b6
RAPID COMMUNICATION Prev   Next  

Atom-pair tunneling and quantum phase transition in asymmetry double-well trap in strong-interaction regime

Ji-Li Liu(刘吉利)1, Jiu-Qing Liang(梁九卿)2
1 College of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China;
2 Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, China
Abstract  The quantum effect of nonlinear co-tunnelling process, which is dependent on atom-pair tunneling and asymmetry of an double-well trap, is studied by using an asymmetrical extended Bose-Hubbard model. Due to the existence of atom-pair tunneling that describes quantum phenomena of ultracold atom-gas clouds in an asymmetrical double-well trap, the asymmetrical extended Bose-Hubbard model is better than the previous Bose-Hubbard model model by comparing with the experimental data cited from the literature. The dependence of dynamics and quantum phase transition on atom-pair tunneling and asymmetry are investigated. Importantly, it shows that the asymmetry of the extended Bose-Hubbard model, corresponding to the bias between double wells, leads to a number of resonance tunneling processes, which tunneling is renamed conditional resonance tunneling, and corrects the atom-number parity effect by controlling the bias between double wells.
Keywords:  atom-pair tunneling      quantum phase transition  
Received:  05 July 2019      Revised:  22 August 2019      Accepted manuscript online: 
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  05.30.-d (Quantum statistical mechanics)  
  67.85.Hj (Bose-Einstein condensates in optical potentials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11075099).
Corresponding Authors:  Ji-Li Liu     E-mail:  liujili2006@aliyun.com

Cite this article: 

Ji-Li Liu(刘吉利), Jiu-Qing Liang(梁九卿) Atom-pair tunneling and quantum phase transition in asymmetry double-well trap in strong-interaction regime 2019 Chin. Phys. B 28 110304

[1] Föling S, Trotzky S, Cheinet P, Feld M, Saers R, Widera A, Müler T and Bloch I 2007 Nature 448 1029
[2] Pitaevskii L and Stringari S 1999 Phys. Rev. Lett. 83 4237
[3] Pitaevskii L and Stringari S 2001 Phys. Rev. Lett. 87 180402
[4] Anglin J R, Drummond P and Smerzi A 2001 Phys. Rev. A 64 063605
[5] Mahmud K W, Perry H and Reinhardt W P 2003 J. Phys. B:At. Mol. Opt. Phys. 36 L265
[6] Mahmud K W, Perry H and Reinhardt W P 2005 Phys. Rev. A 71 023615
[7] Ferrini G, Minguzzi A and Hekking F W 2008 Phys. Rev. A 78 023606(R)
[8] Pagnolli G S, Semeghini G, Masi L, Ferioli G, Trenkwalder A, Coop S, Landini M, Modugno G, Lnguscio M, Smerzi A and Fattori M 2017 Phys. Rev. Lett. 118 230403
[9] Milburn G J, Corney J, Wright E M and Walls D F 1997 Phys. Rev. A 55 4318
[10] Smerzi A, Fantoni S, Giovanazzi S and Shenoy S R 1997 Phys. Rev. Lett. 79 4950
[11] Raghavan S, Smerzi A, Fantoni S and Shenoy S R 1999 Phys. Rev. A 59 620
[12] Sasha Zöllner, Hans-Dieter Meyer and Peter Schmelcher 2008 Phys. Rev. Lett. 100 040401
[13] Liang J Q, Liu J L, Li W D and Li Z J 2009 Phys. Rev. A 79 0033619
[14] Hall B V, Whitlock S, Anderson R, Hannaford P and Sidorov A I 2007 Phys. Rev. Lett. 98 030402
[15] Cheinet P, Trotzky S, Feld M and Schnorrberger U 2008 Phys. Rev. Lett. 101 090404
[16] Rubeni D, Links J and Isaac P S 2017 Phys. Rev. A 95 043607
[17] Liu J L and Liang J Q 2011 J. Phys. B:At. Mol. Opt. Phys. 44 025101
[18] Wu B and Niu Q 2000 Phys. Rev. A 61 023402
[19] Fu L and Liu J 2006 Phys. Rev. A 74 063614
[20] Michael Albiez, Rudolf Gati, Jonas Föling, Stefan Hunsmann, Matteo Cristiani and Oberthaler K 2005 Phys. Rev. Lett. 95 010402
[21] Jin Y H, Nie Y H, Liang J Q, Chen Z D, Xie W F and Pu F C 2000 Phys. Rev. B 62 3316
[1] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[2] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
[3] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[4] Quantum phase transitions in CePdAl probed by ultrasonic and thermoelectric measurements
Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Jiahao Zhang(张佳浩), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117103.
[5] Ferromagnetic Heisenberg spin chain in a resonator
Yusong Cao(曹雨松), Junpeng Cao(曹俊鹏), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(9): 090506.
[6] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[7] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[8] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[9] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[10] Classical-field description of Bose-Einstein condensation of parallel light in a nonlinear optical cavity
Hui-Fang Wang(王慧芳), Jin-Jun Zhang(张进军), and Jian-Jun Zhang(张建军). Chin. Phys. B, 2021, 30(11): 110301.
[11] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[12] Dissipative quantum phase transition in a biased Tavis-Cummings model
Zhen Chen(陈臻), Yueyin Qiu(邱岳寅), Guo-Qiang Zhang(张国强), Jian-Qiang You(游建强). Chin. Phys. B, 2020, 29(4): 044201.
[13] Heavy fermions in high magnetic fields
M Smidman, B Shen(沈斌), C Y Guo(郭春煜), L Jiao(焦琳), X Lu(路欣), H Q Yuan(袁辉球). Chin. Phys. B, 2019, 28(1): 017106.
[14] Monogamy quantum correlation near the quantum phase transitions in the two-dimensional XY spin systems
Meng Qin(秦猛), Zhongzhou Ren(任中洲), Xin Zhang(张欣). Chin. Phys. B, 2018, 27(6): 060301.
[15] Enhanced second harmonic generation in a two-dimensional optical micro-cavity
Jian-Jun Zhang(张建军), Hui-Fang Wang(王慧芳), Jun-Hua Hou(候俊华). Chin. Phys. B, 2018, 27(3): 034207.
No Suggested Reading articles found!