Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 114208    DOI: 10.1088/1674-1056/ab4ce0

Improvement of 2.79-μm laser performance on laser diode side-pumped GYSGG/Er,Pr: GYSGG bonding rod with concave end-faces

Xu-Yao Zhao(赵绪尧)1,2, Dun-Lu Sun(孙敦陆)1, Jian-Qiao Luo(罗建乔)1, Hui-Li Zhang(张会丽)1, Zhong-Qing Fang(方忠庆)1,2, Cong Quan(权聪)1,2, Lun-Zhen Hu(胡伦珍)1,2, Zhi-Yuan Han(韩志远)1,2, Mao-Jie Cheng(程毛杰)1, Shao-Tang Yin(殷绍唐)1
1 The Key Laboratory of Photonic Devices and Materials, Anhui Province, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China;
2 University of Science and Technology of China, Hefei 230022, China
Abstract  A comparative study on the laser performance between bonding and non-bonding Er,Pr:GYSGG rods side-pumped by 970-nm laser diodes (LDs) is conducted for the thermal lensing compensation. The analyses of the thermal distribution and thermal focal length show that the bonding rod possesses a high cooling efficiency and weak thermal lensing effect compared with the conventional Er,Pr:GYSGG rod. Moreover, the laser characteristics of maximum output power, slope efficiency, and laser beam quality of the bonding rod with concave end-faces operated at 2.79 μm are improved under the high-repetition-rate operation. A maximum output power of 13.96 W is achieved at 150-Hz and 200-μs pulse width, corresponding to a slope efficiency of 17.7% and an electrical-to-optical efficiency of 12.9%. All results suggest that the combination of thermal bonding and concave end-face is a suitable structure for thermal lensing compensation.
Keywords:  laser performance      GYSGG/Er      Pr:GYSGG bonding rod      thermal lensing compensation      concave end-faces  
Received:  27 June 2019      Revised:  28 September 2019      Accepted manuscript online: 
PACS:  42.62.Fi (Laser spectroscopy)  
  42.70.Hj (Laser materials)  
  68.60.Dv (Thermal stability; thermal effects)  
  81.65.Ps (Polishing, grinding, surface finishing)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51872290, 51702322, and 51802307) and the National Key Research and Development Program of China (Grant No. 2016YFB1102301).
Corresponding Authors:  Dun-Lu Sun     E-mail:

Cite this article: 

Xu-Yao Zhao(赵绪尧), Dun-Lu Sun(孙敦陆), Jian-Qiao Luo(罗建乔), Hui-Li Zhang(张会丽), Zhong-Qing Fang(方忠庆), Cong Quan(权聪), Lun-Zhen Hu(胡伦珍), Zhi-Yuan Han(韩志远), Mao-Jie Cheng(程毛杰), Shao-Tang Yin(殷绍唐) Improvement of 2.79-μm laser performance on laser diode side-pumped GYSGG/Er,Pr: GYSGG bonding rod with concave end-faces 2019 Chin. Phys. B 28 114208

[1] Vodopyanov K L, Ganikhanov F, Maffetone J P, Zwieback I and Ruderman W 2000 Opt. Lett. 25 841
[2] Chen J K, Sun D L, Luo J Q, Xiao J Z Dou R Q and Zhang Q L 2013 Opt. Commun. 301-302 84
[3] Pollnau M and Jackson S D 2001 IEEE J. Quantum Electron. 7 30
[4] Chen J K, Sun D L, Luo J Q, Zhang H L, Dou R Q, Xiao J Z, Zhang Q L and Yin S T 2013 Opt. Express 21 23425
[5] Zhao X Y, Sun D L, Luo J Q, Zhang H L, Fang Z Q, Quan C, Li X L, Cheng M J, Zhang Q L and Yin S T 2017 Chin. Phys. B 26 074217
[6] Zhao X Y, Sun D L, Luo J Q, Zhang H L, Fang Z Q, Quan C, Hu L Z, Cheng M J, Zhang Q L and Yin S T 2018 Opt. Lett. 43 4312
[7] Neuenschwander B, Weber R and Weber H P 1995 IEEE J. Quantum Electron. 31 1082
[8] Hajiesmaeilbaigi F, Razzaghi H, Esfahani M M, Moghaddam M R A and Sabbaghzadeh J 2005 Laser Phys. Lett. 2 437
[9] Tsunekane M, Taguchi N and Inaba H 1998 Appl. Opt. 37 5713
[10] Wang J T, Cheng T Q, Wang L, Yang J W, Sun D L, Yin S T, Wu X Y and Jiang H H 2015 Laser Phys. Lett. 12 105004
[11] Weber R, Neuenschwander B, Weber H P 1999 Opt. Mater. 11 245
[12] Brown D C 1997 IEEE J. Quantun. Electron. 33 861
[13] Fang Z Q, Sun D L, Luo J Q, Zhang H L, Zhao X Y, Quan C, Hu L Z, Cheng M J, Zhang Q L and Yin S T 2017 Opt. Express 25 21349
[14] Koechner W 2005 Solid State Laser Engineering (Berlin:Springer) Chap. 7
[15] Degallaix J, Slagmolen B, Zhao C, Ju L and Blair D 2005 Gen. Relativ. Gravit. 37 1581
[16] Siengman A E 1993 Defining And Measuring Laser Beam Quality In Solid State Lasers (New York:Plenum) p. 13
[1] Femtosecond laser-induced Cu plasma spectra at different laser polarizations and sample temperatures
Yitong Liu(刘奕彤), Qiuyun Wang(王秋云), Luyun Jiang(蒋陆昀), Anmin Chen(陈安民), Jianhui Han(韩建慧), and Mingxing Jin(金明星). Chin. Phys. B, 2022, 31(10): 105201.
[2] High-sensitivity methane monitoring based on quasi-fundamental mode matched continuous-wave cavity ring-down spectroscopy
Zhe Li(李哲), Shuang Yang(杨爽), Zhirong Zhang(张志荣), Hua Xia(夏滑), Tao Pang(庞涛),Bian Wu(吴边), Pengshuai Sun(孙鹏帅), Huadong Wang(王华东), and Runqing Yu(余润磬). Chin. Phys. B, 2022, 31(9): 094207.
[3] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[4] Generation of stable and tunable optical frequency linked to a radio frequency by use of a high finesse cavity and its application in absorption spectroscopy
Yueting Zhou(周月婷), Gang Zhao(赵刚), Jianxin Liu(刘建鑫), Xiaojuan Yan(闫晓娟), Zhixin Li(李志新), Weiguang Ma(马维光), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(6): 064206.
[5] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[6] Observation of photon recoil effects in single-beam absorption spectroscopy with an ultracold strontium gas
Fachao Hu(胡发超), Canzhu Tan(檀灿竹), Yuhai Jiang(江玉海), Matthias Weidemüller, and Bing Zhu(朱兵). Chin. Phys. B, 2022, 31(1): 016702.
[7] An approach to gas sensors based on tunable diode laser incomplete saturated absorption spectra
Wei Nie(聂伟), Zhen-Yu Xu(许振宇), Rui-Feng Kan(阚瑞峰), Mei-Rong Dong(董美蓉), and Ji-Dong Lu(陆继东). Chin. Phys. B, 2021, 30(6): 064213.
[8] Setup of a dipole trap for all-optical trapping
Miao Wang(王淼), Zheng Chen(陈正), Yao Huang(黄垚), Hua Guan(管桦), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(5): 053702.
[9] A pressure-calibration method of wavelength modulation spectroscopy in sealed microbial growth environment
Kun-Yang Wang(王坤阳), Jie Shao(邵杰), Li-Gang Shao(邵李刚), Jia-Jin Chen(陈家金), Gui-Shi Wang(王贵师), Kun Liu(刘琨), and Xiao-Ming Gao(高晓明). Chin. Phys. B, 2021, 30(5): 054203.
[10] A 532 nm molecular iodine optical frequency standard based on modulation transfer spectroscopy
Feihu Cheng(程飞虎), Ning Jin(金宁), Fenglei Zhang(张风雷), Hui Li(李慧), Yuanbo Du(杜远博), Jie Zhang(张洁), Ke Deng(邓科), and Zehuang Lu(陆泽晃). Chin. Phys. B, 2021, 30(5): 050603.
[11] Analysis of relative wavelength response characterization and its effects on scanned-WMS gas sensing
Dao Zheng(郑道), Zhi-Min Peng(彭志敏), Yan-Jun Ding(丁艳军), and Yan-Jun Du(杜艳君). Chin. Phys. B, 2021, 30(4): 044210.
[12] Controlling multiple optomechanically induced transparency in the distant cavity-optomechanical system
Rui-Jie Xiao(肖瑞杰), Gui-Xia Pan(潘桂侠), and Xiao-Ming Xiu(修晓明). Chin. Phys. B, 2021, 30(3): 034209.
[13] Effect of the distance between focusing lens and target surface on quantitative analysis of Mn element in aluminum alloys by using filament-induced breakdown spectroscopy
Xue-Tong Lu(陆雪童), Shang-Yong Zhao(赵上勇), Xun Gao(高勋), Kai-Min Guo(郭凯敏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2020, 29(12): 124209.
[14] Absorption, quenching, and enhancement by tracer in acetone/toluene laser-induced fluorescence
Guang Chang(常光), Xin Yu(于欣), Jiangbo Peng(彭江波), Yang Yu(于杨), Zhen Cao(曹振), Long Gao(高龙), Minghong Han(韩明宏), and Guohua Wu(武国华). Chin. Phys. B, 2020, 29(12): 124212.
[15] Progress on the 40Ca+ ion optical clock
Baolin Zhang(张宝林), Yao Huang(黄垚), Huaqing Zhang(张华青), Yanmei Hao(郝艳梅), Mengyan Zeng(曾孟彦), Hua Guan(管桦), Kelin Gao(高克林). Chin. Phys. B, 2020, 29(7): 074209.
No Suggested Reading articles found!