CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Observation of photon recoil effects in single-beam absorption spectroscopy with an ultracold strontium gas |
Fachao Hu(胡发超)1,2,†, Canzhu Tan(檀灿竹)1,2,†, Yuhai Jiang(江玉海)2,3,‡, Matthias Weidemüller1,2,4,§, and Bing Zhu(朱兵)4,2,¶ |
1 Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; 2 CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China; 3 Shanghai Advanced Research Institute, Chinese Academy of Sciences(CAS), Shanghai 201210, China; 4 Physikalisches Institut, Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany |
|
|
Abstract We report on observing photon recoil effects in the absorption of a single monochromatic light at 689 nm through an ultracold 88Sr gas, where the recoil frequency is comparable to natural linewidth of the narrow-line transition 5s2 1S0-5s5p 3P1 in strontium. In the regime of high-saturation, the absorption profile becomes asymmetric due to the photon-recoil shift, which is of the same order as the natural linewidth. The lineshape is described by an extension of the optical Bloch equations including the momentum transfers to atoms during emission and absorption of photons. Our work reveals the photon recoil effects in a simplest single-beam absorption setting, which is of significant relevance to other applications such as saturation spectroscopy, Ramsey interferometry, and absorption imaging.
|
Received: 03 August 2021
Revised: 26 August 2021
Accepted manuscript online: 08 September 2021
|
PACS:
|
67.85.-d
|
(Ultracold gases, trapped gases)
|
|
37.10.Vz
|
(Mechanical effects of light on atoms, molecules, and ions)
|
|
42.62.Fi
|
(Laser spectroscopy)
|
|
Corresponding Authors:
Yuhai Jiang, Matthias Weidemüller, Bing Zhu
E-mail: jiangyh@sari.ac.cn;weidemueller@uni-heidelberg.de;bzhu@physi.uni-heidelberg.de
|
Cite this article:
Fachao Hu(胡发超), Canzhu Tan(檀灿竹), Yuhai Jiang(江玉海), Matthias Weidemüller, and Bing Zhu(朱兵) Observation of photon recoil effects in single-beam absorption spectroscopy with an ultracold strontium gas 2022 Chin. Phys. B 31 016702
|
[1] Cohen-Tannoudji C 1990 Fundamental systems in quantum optics pp. 1-164 [2] Kolchenko A, Rautian S and Sokolvskii R 1969 Sov. Phys. JETP 28 986 [3] Weiss D S, Young B C and Chu S 1993 Phys. Rev. Lett. 70 2706 [4] Li Q, Xu D, Cai C and Sun C 2013 Sci. Rep. 3 3144 [5] Robicheaux F and Huang S 2019 Phys. Rev. A 99 013410 [6] Shahmoon E, Lukin M D and Yelin S F 2019 Adv. Atom. Mol. Opt. Phys. 68 1 [7] Hall J 1978 Science 202 147 [8] Guo J, Berman P R, Dubetsky B and Grynberg G 1992 Phys. Rev. A 46 1426 [9] Courtois J Y, Grynberg G, Lounis B and Verkerk P 1994 Phys. Rev. Lett. 72 3017 [10] Bonifacio R and De Salvo L 1994 Nucl. Instrum. Methods Phys. Res. Sec. A: Accelerators, Spectrometers, Detectors and Associated Equipment 341 360 [11] Slama S, Bux S, Krenz G, Zimmermann C and Courteille P W 2007 Phys. Rev. Lett. 98 053603 [12] Hall J L, Bordè C J and Uehara K 1976 Phys. Rev. Lett. 37 1339 [13] Riehle F, Ishikawa J and Helmcke J 1988 Phys. Rev. Lett. 61 2092 [14] Bagayev S, Baklanov A, Chebotayev V and Dychkov A 1989 Appl. Phys. B 48 31 [15] Oates C, Wilpers G and Hollberg L 2005 Phys. Rev. A 71 023404 [16] Grimm R and Mlynek J 1988 Phys. Rev. Lett. 61 2308 [17] Grimm R and Mlynek J 1989 Phys. Rev. Lett. 63 232 [18] Grimm R and Mlynek J 1989 Appl. Phys. B Photophysics and Laser Chemistry 49 179 [19] Grimm R and Mlynek J 1990 Phys. Rev. A 42 2890 [20] Minardi F, Artoni M, Cancio P, Inguscio M, Giusfredi G and Carusotto I 1999 Phys. Rev. A 60 4164 [21] Artoni M, Carusotto I and Minardi F 2000 Phys. Rev. A 62 023402 [22] Zheng X, Sun Y R, Chen J J, Wen J L and Hu S M 2019 Phys. Rev. A 99 032506 [23] Christensen B T R, Henriksen M R, Schäffer S A, Westergaard P G, Tieri D, Ye J, Holland M J and Thomsen J W 2015 Phys. Rev. A 92 053820 [24] Westergaard P G, Christensen B T, Tieri D, Matin R, Cooper J, Holland M, Ye J and Thomsen J W 2015 Phys. Rev. Lett. 114 093002 [25] Hu L, Poli N, Salvi L and Tino G M 2017 Phys. Rev. Lett. 119 263601 [26] Hu L, Wang E, Salvi L, Tinsley J N, Tino G M and Poli N 2019 Class. Quantum Grav. 37 014001 [27] Rudolph J, Wilkason T, Nantel M, Swan H, Holland C M, Jiang Y, Garber B E, Carman S P and Hogan J M 2020 Phys. Rev. Lett. 124 083604 [28] Nosske I, Couturier L, Hu F, Tan C, Qiao C, Blume J, Jiang Y H, Chen P and Weidemüller M 2017 Phys. Rev. A 96 053415 [29] Qiao C, Tan C Z, Hu F C, Couturier L, Nosske I, Chen P, Jiang Y H, Zhu B and Weidemüller M 2019 Appl. Phys. B 125 215 [30] Ketterle W, Durfee D S and Stamper-Kurn D 1999 arXiv preprint cond-mat/9904034 [31] Lewandowski H J, Harber D, Whitaker D L and Cornell E A 2003 J. Low Temp. Phys. 132 309 [32] Stenholm S 1978 Appl. Phys. 15 287 [33] Castin Y, Wallis H and Dalibard J 1989 J. Opt. Soc. Am. B 6 2046 [34] Bienaimè T, Bachelard R, Piovella N and Kaiser R 2013 Fortschritte der Physik 61 377 [35] Zhu B, Cooper J, Ye J and Rey A M 2016 Phys. Rev. A 94 023612 [36] Kupriyanov D, Sokolov I and Havey M 2017 Phys. Rep. 671 1 [37] Bettles R J, Lee M D, Gardiner S A and Ruostekoski J 2020 Commun. Phys. 3 141 [38] Günter G, de Saint-Vincent M R, Schempp H, Hofmann C S, Whitlock S and Weidemüller M 2012 Phys. Rev. Lett. 108 013002 [39] Foot C 2004 Atomic Physics (Oxford University Press) ISBN 0198506961 [40] Labeyrie G, Ackemann T, Klappauf B, Pesch M, Lippi G and Kaiser R 2003 Eur. Phys. J. D-Atomic, Molecular, Optical and Plasma Physics 22 473 [41] Wang Y and Saffman M 2004 Phys. Rev. A 70 013801 [42] Labeyrie G, Gattobigio G, Chanelière T, Lippi G, Ackemann T and Kaiser R 2007 Eur. Phys. J. D 41 337 [43] Roof S, Kemp K, Havey M, Sokolov I M and Kupriyanov D V 2015 Opt. Lett. 40 1137 [44] Han J, Vogt T, Manjappa M, Guo R, Kiffner M and Li W 2015 Phys. Rev. A 92 063824 [45] Noaman M, Langbecker M and Windpassinger P 2018 Opt. Lett. 43 3925 [46] Gilbert J R, Roberts C P and Roberts J L 2018 J. Opt. Soc. Am. B 35 718 [47] Bromley S L, Zhu B, Bishof M, Zhang X, Bothwell T, Schachenmayer J, Nicholson T L, Kaiser R, Yelin S F, Lukin M D, Rey A M and Ye J 2016 Nat. Commun. 7 11039 [48] Chabè J, RouabahMT, Bellando L, Bienaimè T, Piovella N, Bachelard R and Kaiser R 2014 Phys. Rev. A 89 043833 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|