|
|
Setup of a dipole trap for all-optical trapping |
Miao Wang(王淼)1,2,3, Zheng Chen(陈正)1,2,3, Yao Huang(黄垚)1,2, Hua Guan(管桦)1,2, and Ke-Lin Gao(高克林)1,2,3,† |
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; 2 Key Laboratory of Atomic Frequency Standards, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; 3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Micromotion induced by the radio-frequency field contributes greatly to the systematic frequency shifts of optical frequency standards. Although different strategies for mitigating this effect have been proposed, trapping ions optically has the potential to provide a generic solution to the elimination of micromotion. This could be achieved by trapping a single ion in the dipole trap composed of a highpower laser field. Here, we present the setup of the dipole trap composed of a 532 nm laser at a power of 10 W aiming to optically trap a single 40Ca+ and we observe an AC-Stark shift of the fluorescence spectrum line of ~22 MHz caused by the 532 nm dipole beam. The beam waist of the dipole laser is several microns, which would provide a dipole potential strong enough for all-optical trapping of a single 40Ca+ ion.
|
Received: 13 November 2020
Revised: 17 December 2020
Accepted manuscript online: 30 December 2020
|
PACS:
|
37.10.Ty
|
(Ion trapping)
|
|
37.10.-x
|
(Atom, molecule, and ion cooling methods)
|
|
42.62.Fi
|
(Laser spectroscopy)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0307500 and 2017YFA0304401), the National Natural Science Foundation of China (Grant Nos. 11634013 and 11774388), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030100), the CAS Youth Innovation Promotion Association (Grant Nos. 2018364 and Y201963), the Science Fund for Distinguished Young Scholars of Hubei Province, China (Grant No. 2017CFA040) and the K. C. Wong Education Foundation (Grant No. GJTD-2019-15). |
Corresponding Authors:
Ke-Lin Gao
E-mail: klgao@wipm.ac.cn
|
Cite this article:
Miao Wang(王淼), Zheng Chen(陈正), Yao Huang(黄垚), Hua Guan(管桦), and Ke-Lin Gao(高克林) Setup of a dipole trap for all-optical trapping 2021 Chin. Phys. B 30 053702
|
[1] Paul W 1990 Rev. Mod. Phys. 62 531 [2] Phillips W D 1998 Rev. Mod. Phys. 70 721 [3] Godun R M, Nisbet-Jones P B, Jones J M, King S A, Johnson L A, Margolis H S, Szymaniec K, Lea S N, Bongs K and Gill P 2014 Phys. Rev. Lett. 113 210801 [4] Dubé P, Madej A A, Shiner A and Jian B 2015 Phys. Rev. A 92 042119 [5] Huang Y, Guan H, Liu P, Bian W, Ma L, Liang K, Li T and Gao K 2016 Phys. Rev. Lett. 116 013001 [6] Huntemann N, Sanner C, Lipphardt B, Tamm C and Peik E 2016 Phys. Rev. Lett. 116 063001 [7] Brewer S M, Chen J S, Beloy K, Hankin A M, Clements E R, Chou C W, McGrew W F, Zhang X, Fasano R J, Nicolodi D, Leopardi H, Fortier T M, Diddams S A, Ludlow A D, Wineland D J, Leibrandt D R and Hume D B 2019 Phys. Rev. A 100 013409 [8] Justin G. Bohnet, Brian C. Sawyer, Joseph W. Britton, Michael L. Wall, Ana Maria Rey, Michael Foss-Feig and Bollinger J J 2016 Science 352 1297 [9] Schafer V M, Ballance C J, Thirumalai K, Stephenson L J, Ballance T G, Steane A M and Lucas D M 2018 Nature 555 75 [10] Ge W, Sawyer B C, Britton J W, Jacobs K, Bollinger J J and Foss-Feig M 2019 Phys. Rev. Lett. 122 030501 [11] Pagano G, Hess P W, Kaplan H B, Tan W L, Richerme P, Becker P, Kyprianidis A, Zhang J, Birckelbaw E, Hernandez M R, Wu Y and Monroe C 2018 Quantum Sci. Technol. 4 014004 [12] Hempel C, Maier C, Romero J, McClean J, Monz T, Shen H, Jurcevic P, Lanyon B P, Love P, Babbush R, Aspuru-Guzik A, Blatt R and Roos C F 2018 Phys. Rev. X 8 031022 [13] Bautista-Salvador A, Zarantonello G, Hahn H, Preciado-Grijalva A, Morgner J, Wahnschaffe M and Ospelkaus C 2019 New J. Phys. 21 043011 [14] Wu Y K and Duan L M 2020 Chin. Phys. Lett. 37 070302 [15] Huang Y, Guan H, Zeng M, Tang L and Gao K 2019 Phys. Rev. A 99 011401 [16] Huang Y, Cao J, Liu P, Liang K, Ou B, Guan H, Huang X, Li T and Gao K 2012 Phys. Rev. A 85 030503 [17] Cetina M, Grier A T and Vuletic V 2012 Phys. Rev. Lett. 109 253201 [18] Nguyen l H, Kalev A, Barrett M D and Englert B G 2012 Phys. Rev. A 85 052718 [19] Schneider C, Enderlein M, Huber T and Schaetz T 2010 Nat. Photon. 4 772 [20] Du L J, Chen T, Song H F, Chen S L, Li H X, Huang Y, Tong X, Gao K L and Guan H 2015 Chin. Phys. B 24 083702 [21] Du L J, Song H F, Li H X, Chen S L, Chen T, Sun H Y, Huang Y, Tong X, Guan H and Gao K L 2015 Chin. Phys. B 24 113703 [22] Zhou P P, Chen S L, Liang S Y, Sun W, Sun H Y, Huang Y, Guan H and Gao K L 2020 Chin. Phys. Lett. 37 093701 [23] Li H X, Li M, Zhang Q Y and Tong X 2019 Chin. Phys. Lett. 36 073701 [24] Lucas D, Ramos A, Home J, McDonnell M, Nakayama S, Stacey J P, Webster S, Stacey D and Steane A 2004 Phys. Rev. A 69 012711 [25] Tanaka U, Matsunishi H, Morita I and Urabe S 2005 Appl. Phys. B 81 795 [26] Shao H, Wang M, Zeng M, Guan H and Gao K 2018 J. Phys. Commun. 2 095019 [27] Stenholm S 1986 Rev. Mod. Phys. 58 699 [28] Wineland D J and Itano W M 1979 Phys. Rev. A 20 1521 [29] Guan H, Huang Y, Liu P L, Bian W, Shao H and Gao K L 2015 Chin. Phys. B 24 054213 [30] Zhang B, Huang Y, Zhang H, Hao Y, Zeng M, Guan H and Gao K 2020 Chin. Phys. B 29 074209 [31] Schuda F, Stroud C R and Hercher M 1974 J. Phys. B: At. Mol. Phys. 7 L198 [32] Autler S H and Townes C H 1955 Phys. Rev. 100 703 [33] Grimm R, Weidemüller M and Ovchinnikov Y B 2000 Adv. At. Mol. Opt. Phys. 42 95 [34] Schneider C, Enderlein M, Huber T, Dürr S and Schaetz T 2012 Phys. Rev. A 85 013422 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|