Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 050603    DOI: 10.1088/1674-1056/abd754
GENERAL Prev   Next  

A 532 nm molecular iodine optical frequency standard based on modulation transfer spectroscopy

Feihu Cheng(程飞虎), Ning Jin(金宁), Fenglei Zhang(张风雷), Hui Li(李慧), Yuanbo Du(杜远博), Jie Zhang(张洁), Ke Deng(邓科), and Zehuang Lu(陆泽晃)
MOE Key Laboratory of Fundamental Physical Quantities Measurement, Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  We report construction of an iodine-stabilized laser frequency standard at 532 nm based on modulation transfer spectroscopy (MTS) technology with good reproducibility. A frequency stability of $2.5 \times {10}^{-14}$ at 1 s averaging time is achieved, and the frequency reproducibility has a relative uncertainty of ${3.5\times }{10}^{-13}$, demonstrating the great stability of our setup. The systematic uncertainty of the iodine-stabilized laser frequency standard is evaluated, especially the contribution of the residual amplitude modulation (RAM). The contribution of the RAM in MTS cannot be evaluated directly. To solve this problem, we theoretically deduce the MTS signal with RAM under large modulation depth, and prove that the non-symmetric shape of the MTS signal is directly related to the MTS effect. The non-symmetric shape factor $r$ can be calibrated with a frequency comb, and in real experiments, this $r$ value can be obtained by least-squares fitting of the MTS signal, from which we can infer the RAMinduced frequency shift. The full frequency uncertainty is evaluated to be 5.3 kHz (corresponding to a relative frequency uncertainty of ${9.4\times }{10}^{-12})$. The corrected transition frequency has a difference from the BIPM-recommended value of 2 kHz, which is within ${1}\sigma$ uncertainty, proving the validity of our evaluation.
Keywords:  iodine-stabilized laser frequency standard      modulation transfer spectroscopy      residual amplitude modulation  
Received:  17 October 2020      Revised:  30 November 2020      Accepted manuscript online:  30 December 2020
PACS:  06.20.-f (Metrology)  
  42.62.Fi (Laser spectroscopy)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304401), Key-Area Research and Development Program of GuangDong Province, China (Grant No. 2019B030330001), and the National Natural Science Foundation of China (Grant Nos. 11174095, 61875065, 91536116, and 11804108).
Corresponding Authors:  Ke Deng, Zehuang Lu     E-mail:;

Cite this article: 

Feihu Cheng(程飞虎), Ning Jin(金宁), Fenglei Zhang(张风雷), Hui Li(李慧), Yuanbo Du(杜远博), Jie Zhang(张洁), Ke Deng(邓科), and Zehuang Lu(陆泽晃) A 532 nm molecular iodine optical frequency standard based on modulation transfer spectroscopy 2021 Chin. Phys. B 30 050603

[1] Giacomo P 1984 Metrologia 20 25
[2] Felder R 2005 Metrologia 42 323
[3] Bjorklund G C 1980 Opt. Lett. 5 15
[4] Hall J L, Hollberg L, Baer T and Robinson H G 1981 Appl. Phys. Lett. 39 680
[5] Janik G R, Carlisle C B and Gallagher T F 1986 J. Opt. Soc. Am. B 3 1070
[6] Arie A and Byer R L 1993 J. Opt. Soc. Am. B 10 1990
[7] Döringshoff K, Schuldt T, Kovalchuk E, Stühler J, Braxmaier C and Peters A 2017 Appl. Phys. B 123 183
[8] Schuldt T, Döringshoff K, Kovalchuk E V, Keetman A, Pahl J, Peters A and Braxmaier C 2017 Appl. Opt. 56 1101
[9] Ye J, Ma L S and Hall J L 2001 Phys. Rev. Lett. 87 270801
[10] Gürlebeck N, Wörner L, Schuldt T, Döringshoff K, Gaul K, Gerardi D, Grenzebach A, Jha N, Kovalchuk E, Resch A, Wendrich T, Berger R, Herrmann S, Johann U, Krutzik M, Peters A, Rasel E M and Braxmaier C 2018 Phys. Rev. D 97 124051
[11] Colace L, Masini G and Assanto G 2003 J. Light. Technol. 21 1749
[12] Demtröder W 2014 Laser Spectroscopy, Volume Ⅱ: Experimental Techniques, 4th edn. (Springer) pp. 65
[13] Helmcke J and Bayer-Helms F 1974 IEEE Trans. Instrum. Meas. 23 529
[14] Lenth W 1983 Opt. Lett. 8 575
[15] Camy G, Bordé C and Ducloy M 1982 Opt. Commun. 41 325
[16] Shirley J H 1982 Opt. Lett. 7 537
[17] Eickhoff M L and Hall J L 1995 IEEE Trans. Instrum. Meas. 44 155
[18] Diddams S A, Jones D J, Ye J, Cundiff S T, Hall J L, Ranka J K, Windeler R S, Holzwarth R, Udem T and Hänsch T W 2000 Phys. Rev. Lett. 84 5102
[19] Hong F L, Ishikawa J, Zhang Y, Guo R, Onae A and Matsumoto H 2004 Opt. Commun. 235 377
[20] Nevsky A, Holzwarth R, Reichert J, Udem T, Hänsch T, Zanthier J, Walther H, Schnatz H, Riehle F, Pokasov P, Skvortsov M and Bagayev S 2001 Opt. Commun. 192 263
[21] Li T C, private communications
[22] Cheng F, Deng K, Liu K, Liu H, Zhang J and Lu Z 2019 J. Opt. Soc. Am. B 36 1816
[23] Zhang F, Liu K, Li Z, Cheng F, Feng X, Li K, Lu Z and Zhang J 2020 Rev. Sci. Instrum. 91 013001
[24] Zang E J, Cao J P, Li Y, Li C Y, Deng Y K and Gao C Q 2007 IEEE Trans. Instrum. Meas. 56 673
[25] Diddams S A, Hollberg L, Ma L S and Robertsson L 2002 Opt. Lett. 27 58
[26] Ashkin A, Boyd G D, Dziedzic J M, Smith R G, Ballman A A, Levinstein J J and Nassau K 1966 Appl. Phys. Lett. 9 72
[27] Gehrtz M and Bjorklund G 1986 J. Mol. Struct. 141 153
[28] Whittaker E A, Gehrtz M and Bjorklund G C 1985 J. Opt. Soc. Am. B 2 1320
[29] Whittaker E A, Shum C M, Grebel H and Lotem H 1988 J. Opt. Soc. Am. B 5 1253
[30] Wong N C and Hall J L 1985 J. Opt. Soc. Am. B 2 1527
[31] McCarron D J, King S A and Cornish S L 2008 Meas. Sci. Technol. 19 105601
[32] Preuschoff T, Schlosser M and Birkl G 2018 Opt. Express 26 24010
[33] Jaatinen E and Chartier J M 1998 Metrologia 35 75
[34] Gillespie L J and Fraser L H D 1936 J. Am. Chem. Soc. 58 2260
[35] Fredin-Picard S 1989 Metrologia 26 235
[36] Chartier J M, Picard-Fredin S and Chartier A 1992 Metrologia 29 361
[37] Zucco M, Robertsson L and Wallerand J P 2013 Metrologia 50 402
[38] Hrabina J, Zucco M, Philippe C, Pham T M, Hola M, Acef O, Lazar J and Cip O 2017 Sensors 17 102
[39] Leonhardt V and Camp J B 2006 Appl. Opt. 45 4142
[40] Luo J, Chen L S, Duan H Z, et al. 2016 Class. Quantum Grav. 33 035010
[41] Seto N, Kawamura S and Nakamura T 2001 Phys. Rev. Lett. 87 221103
[1] Flexible control of semiconductor laser with frequency tunable modulation transfer spectroscopy
Ning Ru(茹宁), Yu Wang(王宇), Hui-Juan Ma(马慧娟), Dong Hu(胡栋), Li Zhang(张力), Shang-Chun Fan(樊尚春). Chin. Phys. B, 2018, 27(7): 074201.
[2] Modulation transfer spectroscopy based on acousto-optic modulator with zero frequency shift
Chen-Fei Wu(吴晨菲), Xue-Shu Yan(颜学术), Li-Xun Wei(卫立勋), Pei Ma(马沛), Jian-Hui Tu(涂建辉), Jian-Wei Zhang(张建伟), Li-Jun Wang(王力军). Chin. Phys. B, 2018, 27(11): 114203.
[3] Frequency stabilization of a 399-nm laser by modulation transfer spectroscopy in an ytterbium hollow cathode lamp
Wang Wen-Li(王文丽), Ye Jie(叶捷), Jiang Hai-Ling(蒋海灵), Bi Zhi-Yi(毕志毅), Ma Long-Sheng(马龙生), and Xu Xin-Ye(徐信业). Chin. Phys. B, 2011, 20(1): 013201.
[4] A novel method to measure the isotope shifts and hyperfine splittings of all ytterbium isotopes for a 399-nm transition
Wang Wen-Li(王文丽) and Xu Xin-Ye(徐信业). Chin. Phys. B, 2010, 19(12): 123202.
No Suggested Reading articles found!