ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
All-optical switch and transistor based on coherent light-controlled single two-level atom coupling with two nanowires |
Xin-Qin Zhang(张新琴)1, Xiu-Wen Xia(夏秀文)1,2, Jing-Ping Xu(许静平)2, Mu-Tian Cheng(程木田)3, Ya-Ping Yang(羊亚平)2 |
1 Institute of Atomic and Molecular Physics and Functional Materials, School of Mathematics and Physics, Jinggangshan University, Ji'an 343009, China; 2 MOE Key Laboratory of Advanced Micro-structure Materials, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; 3 School of Electrical Engineering&Information, Anhui University of Technology, Maanshan 243002, China |
|
|
Abstract Atom-nanowire coupling system is a promising platform for optical quantum information processing. Unlike the previous designing of optical switch and transistor requiring a dedicated multi-level emitter and high fineness microcavity, a new proposal is put forward which contains a single two-level atom asymmetrically coupled with two nanowires. Single-emitter manipulation of photonic signals for bilateral coherent incident is clear now, since we specify atomic saturation nonlinearity into three contributions which brings us a new approach to realizing light-controlled-light at weak light and single-atom levels. An efficient optically controllable switch based on self-matching-induced-block and a concise optical transistor are proposed. Our findings show potential applications in full-optical devices.
|
Received: 02 March 2019
Revised: 11 July 2019
Accepted manuscript online:
|
PACS:
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
42.50.Ct
|
(Quantum description of interaction of light and matter; related experiments)
|
|
42.50.Nn
|
(Quantum optical phenomena in absorbing, amplifying, dispersive and conducting media; cooperative phenomena in quantum optical systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11864018 and 11574229), the Scientific Research Foundation of Education Department of Jiangxi Province, China (Grant No. GJJ170645), and the Doctor Startup Fund of the Natural Science of Jinggangshan University, China (Grant No. JZB16003). |
Corresponding Authors:
Xiu-Wen Xia
E-mail: jgsuxxw@126.com
|
Cite this article:
Xin-Qin Zhang(张新琴), Xiu-Wen Xia(夏秀文), Jing-Ping Xu(许静平), Mu-Tian Cheng(程木田), Ya-Ping Yang(羊亚平) All-optical switch and transistor based on coherent light-controlled single two-level atom coupling with two nanowires 2019 Chin. Phys. B 28 114207
|
[36] |
Zhang X Q, Xia X W, Xu J P and Yang Y P 2017 Chin. Phys. B 26 54208
|
[1] |
Monroe D 2014 Commun. ACM 57 13
|
[37] |
Xia X, Zhang X, Xu J, Cheng M and Yang Y 2017 J. Appl. Phys. 122 023102
|
[2] |
Hwang J, Pototschnig M, Lettow R, Zumofen G, Renn A, Gotzinger S and Sandoghdar V 2009 Nature 460 76
|
[38] |
Xia X, Zhang X, Xu J, Cheng M and Yang Y 2018 Chin. Phys. B 27 114205
|
[3] |
Ballarini D, De Giorgi M, Cancellieri E, Houdré R, Giacobino E, Cingolani R, Bramati A, Gigli G and Sanvitto D 2013 Nat. Commun. 4 1778
|
[39] |
Chen Y, Wubs M, Mork J and Koenderink A F 2011 New J. Phys. 13 103010
|
[4] |
Micheli A, Daley A J, Jaksch D and Zoller P 2004 Phys. Rev. Lett. 93 140408
|
[40] |
Agarwal G S, Di K, Wang L and Zhu Y 2016 Phys. Rev. A 93 063805
|
[5] |
Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J and Zhu S Y 2013 Phys. Rev. Lett. 110 093901
|
[41] |
Chen Y, Nielsen T R, Gregersen N, Lodahl P and Mork J 2010 Phys. Rev. B 81 125431
|
[6] |
Fan L, Wang J, Varghese L T, Shen H, Niu B, Xuan Y, Weiner A M and Qi M 2012 Science 335 447
|
[42] |
Chen Y, Gregersen N, Nielsen T R, Mork J and Lodahl P 2010 Opt. Express 18 12489
|
[7] |
Fan L, Varghese L T, Wang J, Xuan Y, Weiner A M and Qi M 2013 Opt. Lett. 38 1259
|
[43] |
Shen J T and Fan S 2009 Phys. Rev. A 79 023837
|
[8] |
Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G and Xiao M 2014 Nat. Photon. 8 524
|
[9] |
Orrit M 2007 Nat. Phys. 3 755
|
[10] |
Tiecke T G, Thompson J D, de Leon N P, Liu L R, Vuletic V and Lukin M D 2014 Nature 508 241
|
[11] |
Le Kien F and Rauschenbeutel A 2016 Phys. Rev. A 93 013849
|
[12] |
Chang D E, Sorensen A S, Demler E A and Lukin M D 2007 Nat. Phys. 3 807
|
[13] |
Chen B, Jiang C, Li J J and Zhu K D 2011 Phys. Rev. A 84 055802
|
[14] |
He M, Liao S, Liu L and Dong J 2016 Front. Optoelectron. 9 406
|
[15] |
Chen W, Beck K M, Buecker R, Gullans M, Lukin M D, Tanji-Suzuki H and Vuletic V 2013 Science 341 768
|
[16] |
Yoshida K, Shibata K and Hirakawa K 2015 Phys. Rev. Lett. 115 138302
|
[17] |
Beck K M, Chen W, Lin Q, Gullans M, Lukin M D and Vuletić V 2014 Phys. Rev. Lett. 113 113603
|
[18] |
Hosseini M, Beck K M, Duan Y, Chen W and Vuletić V 2016 Phys. Rev. Lett. 116 033602
|
[19] |
Liang J C and Wang H C 2017 Opt. Lett. 42 3654
|
[20] |
Fang X, MacDonald Kevin F and Zheludev Nikolay I 2015 Light Sci. Appl. 4 7
|
[21] |
Yu X Y, Li J H and Li X B 2013 J. Opt. Soc. Am. B 30 649
|
[22] |
Harshawardhan W and Agarwal G 1996 Phys. Rev. A 53 1812
|
[23] |
Li F L and Gao S Y 2000 Phys. Rev. A 62 043809
|
[24] |
Thorwart M, Hartmann L, Goychuk I and Hänggi P 2000 J. Mod. Opt. 47 2905
|
[25] |
Lukin M and Imamoǧlu A 2001 Nature 413 273
|
[26] |
Englund D, Faraon A, Fushman I, Stoltz N, Petroff P and Vuckovic J 2007 Nature 450 857
|
[27] |
Reiserer A and Rempe G 2015 Rev. Mod. Phys. 87 1379
|
[28] |
Jing J, Zhou Z, Liu C, Qin Z, Fang Y, Zhou J and Zhang W 2014 Appl. Phys. Lett. 104
|
[29] |
Goodarzi A and Ghanaatshoar M 2016 J. Opt. Soc. Am. B 33 1594
|
[30] |
Goodarzi A and Ghanaatshoar M 2018 Sci. Rep. 8 8
|
[31] |
Shen J T and Fan S 2005 Opt. Lett. 30 2001
|
[32] |
Waks E and Vuckovic J 2006 Phys. Rev. Lett. 96 153601
|
[33] |
Shen Y, Bradford M and Shen J T 2011 Phys. Rev. Lett. 107 173902
|
[34] |
Li X, Xie L and Wei L F 2015 Phys. Rev. A 92 063840
|
[35] |
Kim N C, Ko M C and Choe C I 2015 Plasmonics 10 1447
|
[36] |
Zhang X Q, Xia X W, Xu J P and Yang Y P 2017 Chin. Phys. B 26 54208
|
[37] |
Xia X, Zhang X, Xu J, Cheng M and Yang Y 2017 J. Appl. Phys. 122 023102
|
[38] |
Xia X, Zhang X, Xu J, Cheng M and Yang Y 2018 Chin. Phys. B 27 114205
|
[39] |
Chen Y, Wubs M, Mork J and Koenderink A F 2011 New J. Phys. 13 103010
|
[40] |
Agarwal G S, Di K, Wang L and Zhu Y 2016 Phys. Rev. A 93 063805
|
[41] |
Chen Y, Nielsen T R, Gregersen N, Lodahl P and Mork J 2010 Phys. Rev. B 81 125431
|
[42] |
Chen Y, Gregersen N, Nielsen T R, Mork J and Lodahl P 2010 Opt. Express 18 12489
|
[43] |
Shen J T and Fan S 2009 Phys. Rev. A 79 023837
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|