Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 114207    DOI: 10.1088/1674-1056/ab48f2
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

All-optical switch and transistor based on coherent light-controlled single two-level atom coupling with two nanowires

Xin-Qin Zhang(张新琴)1, Xiu-Wen Xia(夏秀文)1,2, Jing-Ping Xu(许静平)2, Mu-Tian Cheng(程木田)3, Ya-Ping Yang(羊亚平)2
1 Institute of Atomic and Molecular Physics and Functional Materials, School of Mathematics and Physics, Jinggangshan University, Ji'an 343009, China;
2 MOE Key Laboratory of Advanced Micro-structure Materials, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China;
3 School of Electrical Engineering&Information, Anhui University of Technology, Maanshan 243002, China
Abstract  Atom-nanowire coupling system is a promising platform for optical quantum information processing. Unlike the previous designing of optical switch and transistor requiring a dedicated multi-level emitter and high fineness microcavity, a new proposal is put forward which contains a single two-level atom asymmetrically coupled with two nanowires. Single-emitter manipulation of photonic signals for bilateral coherent incident is clear now, since we specify atomic saturation nonlinearity into three contributions which brings us a new approach to realizing light-controlled-light at weak light and single-atom levels. An efficient optically controllable switch based on self-matching-induced-block and a concise optical transistor are proposed. Our findings show potential applications in full-optical devices.
Keywords:  optical transistor      optical switch      nano-waveguide      light-controlled-light  
Received:  02 March 2019      Revised:  11 July 2019      Accepted manuscript online: 
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  42.50.Nn (Quantum optical phenomena in absorbing, amplifying, dispersive and conducting media; cooperative phenomena in quantum optical systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11864018 and 11574229), the Scientific Research Foundation of Education Department of Jiangxi Province, China (Grant No. GJJ170645), and the Doctor Startup Fund of the Natural Science of Jinggangshan University, China (Grant No. JZB16003).
Corresponding Authors:  Xiu-Wen Xia     E-mail:  jgsuxxw@126.com

Cite this article: 

Xin-Qin Zhang(张新琴), Xiu-Wen Xia(夏秀文), Jing-Ping Xu(许静平), Mu-Tian Cheng(程木田), Ya-Ping Yang(羊亚平) All-optical switch and transistor based on coherent light-controlled single two-level atom coupling with two nanowires 2019 Chin. Phys. B 28 114207

[36] Zhang X Q, Xia X W, Xu J P and Yang Y P 2017 Chin. Phys. B 26 54208
[1] Monroe D 2014 Commun. ACM 57 13
[37] Xia X, Zhang X, Xu J, Cheng M and Yang Y 2017 J. Appl. Phys. 122 023102
[2] Hwang J, Pototschnig M, Lettow R, Zumofen G, Renn A, Gotzinger S and Sandoghdar V 2009 Nature 460 76
[38] Xia X, Zhang X, Xu J, Cheng M and Yang Y 2018 Chin. Phys. B 27 114205
[3] Ballarini D, De Giorgi M, Cancellieri E, Houdré R, Giacobino E, Cingolani R, Bramati A, Gigli G and Sanvitto D 2013 Nat. Commun. 4 1778
[39] Chen Y, Wubs M, Mork J and Koenderink A F 2011 New J. Phys. 13 103010
[4] Micheli A, Daley A J, Jaksch D and Zoller P 2004 Phys. Rev. Lett. 93 140408
[40] Agarwal G S, Di K, Wang L and Zhu Y 2016 Phys. Rev. A 93 063805
[5] Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J and Zhu S Y 2013 Phys. Rev. Lett. 110 093901
[41] Chen Y, Nielsen T R, Gregersen N, Lodahl P and Mork J 2010 Phys. Rev. B 81 125431
[6] Fan L, Wang J, Varghese L T, Shen H, Niu B, Xuan Y, Weiner A M and Qi M 2012 Science 335 447
[42] Chen Y, Gregersen N, Nielsen T R, Mork J and Lodahl P 2010 Opt. Express 18 12489
[7] Fan L, Varghese L T, Wang J, Xuan Y, Weiner A M and Qi M 2013 Opt. Lett. 38 1259
[43] Shen J T and Fan S 2009 Phys. Rev. A 79 023837
[8] Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G and Xiao M 2014 Nat. Photon. 8 524
[9] Orrit M 2007 Nat. Phys. 3 755
[10] Tiecke T G, Thompson J D, de Leon N P, Liu L R, Vuletic V and Lukin M D 2014 Nature 508 241
[11] Le Kien F and Rauschenbeutel A 2016 Phys. Rev. A 93 013849
[12] Chang D E, Sorensen A S, Demler E A and Lukin M D 2007 Nat. Phys. 3 807
[13] Chen B, Jiang C, Li J J and Zhu K D 2011 Phys. Rev. A 84 055802
[14] He M, Liao S, Liu L and Dong J 2016 Front. Optoelectron. 9 406
[15] Chen W, Beck K M, Buecker R, Gullans M, Lukin M D, Tanji-Suzuki H and Vuletic V 2013 Science 341 768
[16] Yoshida K, Shibata K and Hirakawa K 2015 Phys. Rev. Lett. 115 138302
[17] Beck K M, Chen W, Lin Q, Gullans M, Lukin M D and Vuletić V 2014 Phys. Rev. Lett. 113 113603
[18] Hosseini M, Beck K M, Duan Y, Chen W and Vuletić V 2016 Phys. Rev. Lett. 116 033602
[19] Liang J C and Wang H C 2017 Opt. Lett. 42 3654
[20] Fang X, MacDonald Kevin F and Zheludev Nikolay I 2015 Light Sci. Appl. 4 7
[21] Yu X Y, Li J H and Li X B 2013 J. Opt. Soc. Am. B 30 649
[22] Harshawardhan W and Agarwal G 1996 Phys. Rev. A 53 1812
[23] Li F L and Gao S Y 2000 Phys. Rev. A 62 043809
[24] Thorwart M, Hartmann L, Goychuk I and Hänggi P 2000 J. Mod. Opt. 47 2905
[25] Lukin M and Imamoǧlu A 2001 Nature 413 273
[26] Englund D, Faraon A, Fushman I, Stoltz N, Petroff P and Vuckovic J 2007 Nature 450 857
[27] Reiserer A and Rempe G 2015 Rev. Mod. Phys. 87 1379
[28] Jing J, Zhou Z, Liu C, Qin Z, Fang Y, Zhou J and Zhang W 2014 Appl. Phys. Lett. 104
[29] Goodarzi A and Ghanaatshoar M 2016 J. Opt. Soc. Am. B 33 1594
[30] Goodarzi A and Ghanaatshoar M 2018 Sci. Rep. 8 8
[31] Shen J T and Fan S 2005 Opt. Lett. 30 2001
[32] Waks E and Vuckovic J 2006 Phys. Rev. Lett. 96 153601
[33] Shen Y, Bradford M and Shen J T 2011 Phys. Rev. Lett. 107 173902
[34] Li X, Xie L and Wei L F 2015 Phys. Rev. A 92 063840
[35] Kim N C, Ko M C and Choe C I 2015 Plasmonics 10 1447
[36] Zhang X Q, Xia X W, Xu J P and Yang Y P 2017 Chin. Phys. B 26 54208
[37] Xia X, Zhang X, Xu J, Cheng M and Yang Y 2017 J. Appl. Phys. 122 023102
[38] Xia X, Zhang X, Xu J, Cheng M and Yang Y 2018 Chin. Phys. B 27 114205
[39] Chen Y, Wubs M, Mork J and Koenderink A F 2011 New J. Phys. 13 103010
[40] Agarwal G S, Di K, Wang L and Zhu Y 2016 Phys. Rev. A 93 063805
[41] Chen Y, Nielsen T R, Gregersen N, Lodahl P and Mork J 2010 Phys. Rev. B 81 125431
[42] Chen Y, Gregersen N, Nielsen T R, Mork J and Lodahl P 2010 Opt. Express 18 12489
[43] Shen J T and Fan S 2009 Phys. Rev. A 79 023837
[1] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[2] Highly tunable plasmon-induced transparency with Dirac semimetal metamaterials
Chunzhen Fan(范春珍), Peiwen Ren(任佩雯), Yuanlin Jia(贾渊琳), Shuangmei Zhu(朱双美), and Junqiao Wang(王俊俏). Chin. Phys. B, 2021, 30(9): 096103.
[3] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[4] Electro-optomechanical switch via tunable bistability and four-wave mixing
Kamran Ullah. Chin. Phys. B, 2019, 28(11): 114209.
[5] Electrical transport and optical properties of Cd3As2 thin films
Yun-Kun Yang(杨运坤), Fa-Xian Xiu(修发贤), Feng-Qiu Wang(王枫秋), Jun Wang(王军), Yi Shi(施毅). Chin. Phys. B, 2019, 28(10): 107502.
[6] Silicon nanophotonics for on-chip light manipulation
Jingshu Guo(郭敬书), Daoxin Dai(戴道锌). Chin. Phys. B, 2018, 27(10): 104208.
[7] Controllable double electromagnetically induced transparency in a closed four-level-loop cavity–atom system
Miao-Di Guo(郭苗迪), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2017, 26(7): 074207.
[8] Single-photon interconnector composed of two individual one-dimensional nano-waveguides and a single emitter
Xin-Qin Zhang(张新琴), Xiu-Wen Xia(夏秀文), Jing-Ping Xu(许静平), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2017, 26(5): 054208.
[9] Electrically controlled optical switch in the hybrid opto-electromechanical system
Li-Guo Qin(秦立国), Zhong-Yang Wang(王中阳), Hong-Yang Ma(马鸿洋), Shu-Mei Wang(王淑梅), Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2017, 26(12): 128502.
[10] Multifunctional disk device for optical switch and temperature sensor
Bian Zhen-Yu (卞振宇), Liang Rui-Sheng (梁瑞生), Zhang Yu-Jing (张郁靖), Yi Li-Xuan (易丽璇), Lai Gen (赖根), Zhao Rui-Tong (赵瑞通). Chin. Phys. B, 2015, 24(10): 107801.
[11] Block-free optical quantum Banyan network based on quantum state fusion and fission
Zhu Chang-Hua (朱畅华), Meng Yan-Hong (孟艳红), Quan Dong-Xiao (权东晓), Zhao Nan (赵楠), Pei Chang-Xing (裴昌幸). Chin. Phys. B, 2014, 23(12): 120309.
[12] Enhancement of modulation depth of an all-optical switch using an azo dye-ethyl red film
Lu Wen-Qiang(陆文强), Chen Gui-Ying(陈桂英), Hao Zhao-Feng(郝召锋), Xu Jing-Jun(许京军),Tian Jian-Guo(田建国), and Zhang Chun-Ping(张春平). Chin. Phys. B, 2010, 19(8): 084208.
[13] Sub-nanosecond optical switch based on silicon racetrack resonator
Xu Hai-Hua(徐海华), Huang Qing-Zhong(黄庆忠), Li Yun-Tao(李运涛), Yu Yu-De(俞育德), and Yu Jin-Zhong(余金中). Chin. Phys. B, 2010, 19(8): 084210.
[14] Optical switching based on the manipulation of microparticles in a colloidal liquid using strong scattering force
Liu Jin(刘进), Liu Zheng-Qi(刘正奇), Feng Tian-Hua(冯天华), Dai Qiao-Feng(戴峭峰), Wu Li-Jun(吴立军), Lan Sheng(兰胜). Chin. Phys. B, 2010, 19(12): 124209.
[15] Response of colloidal liquids containing magnetic holes of different volume densities to magnetic field characterized by transmission measurement
Deng Hai-Dong(邓海东), Sun Ting(孙婷), Zhao Wei-Ren(赵韦人), Fu Zhi-Cheng(符志成), Dai Qiao-Feng(戴峭峰), Wu Li-Jun(吴立军), Lan Sheng(兰胜), and Achanta Venu Gopal. Chin. Phys. B, 2010, 19(10): 107503.
No Suggested Reading articles found!