Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 034209    DOI: 10.1088/1674-1056/ac11e0
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock

Jing-Jing Xia(夏京京)1, Xiao-Tong Lu(卢晓同)1,2, and Hong Chang(常宏)1,2,†
1 CAS Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Xi'an 710600, China;
2 University of Chinese Academy of Sciences(CAS), Beijing 100049, China
Abstract  The optical Ramsey spectrum is experimentally realized in an 87Sr optical lattice clock, and the measured linewidth agrees well with theoretical expectation. The coherence time between the clock laser and the atoms, which indicates the maximum free evolution period of using Ramsey detection to measure the atom-laser phase information, is determined as 340(23) ms by measuring the fringe contrasts of the Ramsey spectrum as a function of the free evolution period. Furthermore, with the same clock duty cycle of about 0.1, the clock stability is measured by using the Ramsey and Rabi spectra, respectively. The experimental and theoretical results show approximately the same stability as the two detection methods, which indicates that Ramsey detection cannot obviously improve the clock stability until the clock duty cycle is large enough. Thus, it is of great significance to choose the detection method of a specific clock.
Keywords:  optical Ramsey spectrum      optical lattice clock      stability      coherence time  
Received:  31 May 2021      Revised:  01 July 2021      Accepted manuscript online:  07 July 2021
PACS:  42.62.Fi (Laser spectroscopy)  
  95.55.Sh (Auxiliary and recording instruments; clocks and frequency standards)  
  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61775220), the Key Research Project of Frontier Science of the Chinese Academy of Sciences (Grant No. QYZDB-SSW-JSC004), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030100).
Corresponding Authors:  Hong Chang     E-mail:  changhong@ntsc.ac.cn

Cite this article: 

Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏) Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock 2022 Chin. Phys. B 31 034209

[1] Wineland D J 2013 Ann. Phys. 525 739
[2] Haroche S 2013 Rev. Mod. Phys. 85 1083
[3] Dow J M, Neilan R E and Rizos C 2009 J Geod 83 689
[4] Derevianko A and Pospelov M 2014 Nat. Phys. 10 933
[5] Mehlstäubler T E, Grosche G, Lisdat Chr, Schmidt P O and Denker H 2018 Rep. Prog. 81 064401
[6] Lisdat C, Grosche G, Quintin N, et al. 2016 Nat. Commun. 7 12443
[7] Targat R Le, Lorini L, Coq Y Le, et al. 2013 Nat. Commun. 4 2109
[8] Milner W R, Robinson J M, Kennedy C J, et al. 2019 Phys. Rev. Lett. 123 173201
[9] Ramsey and Norman F 1950 Phys. Rev. 78 695
[10] Liu L, Lü D S, Chen W B, et al. 2018 Nat. Commun. 9 2760
[11] Schindler P, Nigg D, Monz T, Barreiro J T, Martinez E, Wang S X, Quint S, Brandl M F, Nebendahl V, Roos C F, Chwalla M, Hennrich M and Blatt R 2013 New J. Phys. 15 123012
[12] Bowden W, Vianello A, Hill I R, Schioppo M and Hobson R 2020 Phys. Rev. X 10 041052
[13] Schioppo M, Brown R C, McGrew W F, Hinkley N, Fasano R J, Beloy K, Yoon T H, Milani G, Nicolodi D, J. Sherman A, Phillips N B, Oates C W and Ludlow A D 2016 Nat. Photon. 11 48
[14] Heavner T P, Donley E A, Levi F, Costanzo G, Parker T E, Shirley J H, Ashby N, Barlow St and Jefferts S R 2014 Metrologia 51 174
[15] Wang Q, Wei R and Wang Y Z 2018 Acta Phys. Sin. 67 163202 (in Chinese)
[16] Takamoto M, Ushijima I, Ohmae N, Yahagi T, Kokado K, Shinkai H and Katori H 2020 Nat. Photon. 14 411
[17] Donley E A, Claussen N R, Thompson S T and Wieman C E 2002 Nature 417 529
[18] Lim J, Lee H G, Lee S, Park C Y and Ahn J 2014 Sci. Rep. 4 5867
[19] Gleyzes S, Kuhr S, Guerlin C, Bernu J, Deléglise S, Hoff U B, Brune M, Raimond J M and Haroche S 2007 Nature 446 297
[20] Safronova M S, Budker D, DeMille D, Jackson K D F, Derevianko A, and Clark C W 2018 Rev. Mod. Phys. 90 025008
[21] Yudin V, Taichenachev A V, Oates C W, Barber Z W, Lemke N D, Ludlow A D, Sterr U, Lisdat C and Riehle F 2010 Phys. Rev. A 82 11804
[22] Shuker M, Pollock J W, Boudot R, Yudin V I, Taichenachev A V, Kitching J and Donley E A 2019 Appl. Phys. Lett. 114 141106
[23] Yudin V I, Basalaev M Yu and Taichnachev A V 2017 J. Phys. Conf. Ser. 793 012034
[24] Shuker M, Pollock J W, Kitching J, Donley E A, Yudin V I, Boudot R and Taichenachev A V 2019 Joint Conference of the IEEE International Frequency Control Symposium an European Frequency and Time Forum, April 14-18, 2019, Orlando, United States, p. 978
[25] Huntemann N, Lipphardt B, Okhapkin M, Tamm C, Peik E, Taichenachev A V and Yudin V I 2012 Phys. Rev. Lett. 109 213002
[26] Shuker M, Pollock J W, Boudot R, Yudin V I, Taichenachev A V, Kitching J and Donley E A 2019 Phys. Rev. Lett. 122 113601
[27] Sanner C, Huntemann N, Lange R, Tamm C and Peik E 2018 Phys. Rev. Lett. 120 053602
[28] Yudin V, Taichenachev A, Basalaev M Y, Zanon-Willette T, Pollock J W, Shuker M, Donley E A and Kitching J 2017 Phys. Rev. Appl. 9 054034
[29] Wang Y B, Yin M J, Ren J, Xu Q F, Lu B Q, Han J X, Guo Y and Chang H 2018 Chin. Phys. B 27 023701
[30] Lu X T, Zhou C H, Li T, Wang Y B and Chang H 2021 Appl. Phys. Lett. 117 231101
[31] Boyd M M, Zelevinsky T, Ludlow A D, Blatt S, Zanon-Willette T, Foreman S M and Jun Y 2011 Phys. Rev. A 76 022510
[32] Marmet L and Madej A A 2000 Can. J. Phys 78 495
[33] Martin M J 2013 Quantum Metrology and Many-Body Physics:Pushing the Frontier of the Optical Lattice Clock (Ph.D. Dissertation) (Colorado:University of Colorado) p. 206
[34] Aaron W Y, William J E, William R M, Dhruv K, Matthew A N, Eric O, Nathan S, Jun Y and Adam M K 2020 Nature 588 408
[35] Ludlow A D 2008 The Strontium Optical Lattice Clock:Optical Spectroscopy with Sub-Hertz Accuracy (Ph.D. Dissertation) (Colorado:University of Colorado) p. 195
[36] Dick G J 1987 Proceedings of the 19th Annual Precise Time and Time Interval Meeting, December 1-3, 1987, Los Angeles, USA, p. 133
[37] Nicholson T L, Martin M J, Williams J R, Bloom B J, Bishof M, Swallows M D, Campbell S L, Ye J 2012 Phys. Rev. Lett. 109 230801
[38] Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Zang E J, Sun Z, Fang F, Li T C and Fang Z J 2015 Chin. Phys. Lett. 32 090601
[39] Liu Hu, Zhang X, Jiang K L, Wang J Q, Zhu Q, Xiong Z X, He L X and Lyu B L 2017 Chin. Phys. Lett. 34 020601
[1] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[2] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[3] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[4] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[5] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[6] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[7] Theoretical calculations on Landé $g$-factors and quadratic Zeeman shift coefficients of $n$s$n$p $^{3} {P}^{o}_{0}$ clock states in Mg and Cd optical lattice clocks
Benquan Lu(卢本全) and Hong Chang(常宏). Chin. Phys. B, 2023, 32(1): 013101.
[8] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[9] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[10] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[11] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[12] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[13] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[14] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[15] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
No Suggested Reading articles found!