ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock |
Jing-Jing Xia(夏京京)1, Xiao-Tong Lu(卢晓同)1,2, and Hong Chang(常宏)1,2,† |
1 CAS Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Xi'an 710600, China; 2 University of Chinese Academy of Sciences(CAS), Beijing 100049, China |
|
|
Abstract The optical Ramsey spectrum is experimentally realized in an 87Sr optical lattice clock, and the measured linewidth agrees well with theoretical expectation. The coherence time between the clock laser and the atoms, which indicates the maximum free evolution period of using Ramsey detection to measure the atom-laser phase information, is determined as 340(23) ms by measuring the fringe contrasts of the Ramsey spectrum as a function of the free evolution period. Furthermore, with the same clock duty cycle of about 0.1, the clock stability is measured by using the Ramsey and Rabi spectra, respectively. The experimental and theoretical results show approximately the same stability as the two detection methods, which indicates that Ramsey detection cannot obviously improve the clock stability until the clock duty cycle is large enough. Thus, it is of great significance to choose the detection method of a specific clock.
|
Received: 31 May 2021
Revised: 01 July 2021
Accepted manuscript online: 07 July 2021
|
PACS:
|
42.62.Fi
|
(Laser spectroscopy)
|
|
95.55.Sh
|
(Auxiliary and recording instruments; clocks and frequency standards)
|
|
42.62.Eh
|
(Metrological applications; optical frequency synthesizers for precision spectroscopy)
|
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61775220), the Key Research Project of Frontier Science of the Chinese Academy of Sciences (Grant No. QYZDB-SSW-JSC004), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030100). |
Corresponding Authors:
Hong Chang
E-mail: changhong@ntsc.ac.cn
|
Cite this article:
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏) Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock 2022 Chin. Phys. B 31 034209
|
[1] Wineland D J 2013 Ann. Phys. 525 739 [2] Haroche S 2013 Rev. Mod. Phys. 85 1083 [3] Dow J M, Neilan R E and Rizos C 2009 J Geod 83 689 [4] Derevianko A and Pospelov M 2014 Nat. Phys. 10 933 [5] Mehlstäubler T E, Grosche G, Lisdat Chr, Schmidt P O and Denker H 2018 Rep. Prog. 81 064401 [6] Lisdat C, Grosche G, Quintin N, et al. 2016 Nat. Commun. 7 12443 [7] Targat R Le, Lorini L, Coq Y Le, et al. 2013 Nat. Commun. 4 2109 [8] Milner W R, Robinson J M, Kennedy C J, et al. 2019 Phys. Rev. Lett. 123 173201 [9] Ramsey and Norman F 1950 Phys. Rev. 78 695 [10] Liu L, Lü D S, Chen W B, et al. 2018 Nat. Commun. 9 2760 [11] Schindler P, Nigg D, Monz T, Barreiro J T, Martinez E, Wang S X, Quint S, Brandl M F, Nebendahl V, Roos C F, Chwalla M, Hennrich M and Blatt R 2013 New J. Phys. 15 123012 [12] Bowden W, Vianello A, Hill I R, Schioppo M and Hobson R 2020 Phys. Rev. X 10 041052 [13] Schioppo M, Brown R C, McGrew W F, Hinkley N, Fasano R J, Beloy K, Yoon T H, Milani G, Nicolodi D, J. Sherman A, Phillips N B, Oates C W and Ludlow A D 2016 Nat. Photon. 11 48 [14] Heavner T P, Donley E A, Levi F, Costanzo G, Parker T E, Shirley J H, Ashby N, Barlow St and Jefferts S R 2014 Metrologia 51 174 [15] Wang Q, Wei R and Wang Y Z 2018 Acta Phys. Sin. 67 163202 (in Chinese) [16] Takamoto M, Ushijima I, Ohmae N, Yahagi T, Kokado K, Shinkai H and Katori H 2020 Nat. Photon. 14 411 [17] Donley E A, Claussen N R, Thompson S T and Wieman C E 2002 Nature 417 529 [18] Lim J, Lee H G, Lee S, Park C Y and Ahn J 2014 Sci. Rep. 4 5867 [19] Gleyzes S, Kuhr S, Guerlin C, Bernu J, Deléglise S, Hoff U B, Brune M, Raimond J M and Haroche S 2007 Nature 446 297 [20] Safronova M S, Budker D, DeMille D, Jackson K D F, Derevianko A, and Clark C W 2018 Rev. Mod. Phys. 90 025008 [21] Yudin V, Taichenachev A V, Oates C W, Barber Z W, Lemke N D, Ludlow A D, Sterr U, Lisdat C and Riehle F 2010 Phys. Rev. A 82 11804 [22] Shuker M, Pollock J W, Boudot R, Yudin V I, Taichenachev A V, Kitching J and Donley E A 2019 Appl. Phys. Lett. 114 141106 [23] Yudin V I, Basalaev M Yu and Taichnachev A V 2017 J. Phys. Conf. Ser. 793 012034 [24] Shuker M, Pollock J W, Kitching J, Donley E A, Yudin V I, Boudot R and Taichenachev A V 2019 Joint Conference of the IEEE International Frequency Control Symposium an European Frequency and Time Forum, April 14-18, 2019, Orlando, United States, p. 978 [25] Huntemann N, Lipphardt B, Okhapkin M, Tamm C, Peik E, Taichenachev A V and Yudin V I 2012 Phys. Rev. Lett. 109 213002 [26] Shuker M, Pollock J W, Boudot R, Yudin V I, Taichenachev A V, Kitching J and Donley E A 2019 Phys. Rev. Lett. 122 113601 [27] Sanner C, Huntemann N, Lange R, Tamm C and Peik E 2018 Phys. Rev. Lett. 120 053602 [28] Yudin V, Taichenachev A, Basalaev M Y, Zanon-Willette T, Pollock J W, Shuker M, Donley E A and Kitching J 2017 Phys. Rev. Appl. 9 054034 [29] Wang Y B, Yin M J, Ren J, Xu Q F, Lu B Q, Han J X, Guo Y and Chang H 2018 Chin. Phys. B 27 023701 [30] Lu X T, Zhou C H, Li T, Wang Y B and Chang H 2021 Appl. Phys. Lett. 117 231101 [31] Boyd M M, Zelevinsky T, Ludlow A D, Blatt S, Zanon-Willette T, Foreman S M and Jun Y 2011 Phys. Rev. A 76 022510 [32] Marmet L and Madej A A 2000 Can. J. Phys 78 495 [33] Martin M J 2013 Quantum Metrology and Many-Body Physics:Pushing the Frontier of the Optical Lattice Clock (Ph.D. Dissertation) (Colorado:University of Colorado) p. 206 [34] Aaron W Y, William J E, William R M, Dhruv K, Matthew A N, Eric O, Nathan S, Jun Y and Adam M K 2020 Nature 588 408 [35] Ludlow A D 2008 The Strontium Optical Lattice Clock:Optical Spectroscopy with Sub-Hertz Accuracy (Ph.D. Dissertation) (Colorado:University of Colorado) p. 195 [36] Dick G J 1987 Proceedings of the 19th Annual Precise Time and Time Interval Meeting, December 1-3, 1987, Los Angeles, USA, p. 133 [37] Nicholson T L, Martin M J, Williams J R, Bloom B J, Bishof M, Swallows M D, Campbell S L, Ye J 2012 Phys. Rev. Lett. 109 230801 [38] Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Zang E J, Sun Z, Fang F, Li T C and Fang Z J 2015 Chin. Phys. Lett. 32 090601 [39] Liu Hu, Zhang X, Jiang K L, Wang J Q, Zhu Q, Xiong Z X, He L X and Lyu B L 2017 Chin. Phys. Lett. 34 020601 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|