Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 124212    DOI: 10.1088/1674-1056/abb3e1
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Absorption, quenching, and enhancement by tracer in acetone/toluene laser-induced fluorescence

Guang Chang(常光)1,2, Xin Yu(于欣)1,2, Jiangbo Peng(彭江波)1,2,†, Yang Yu(于杨)1,2, Zhen Cao(曹振)1,2, Long Gao(高龙)1,2, Minghong Han(韩明宏)1,2, and Guohua Wu(武国华)1,2
1 National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080, China; 2 Institute of Opto-Electronics, Harbin Institute of Technology, Harbin 150080, China
Abstract  To measure the equivalent ratio distribution of the two-stage lean premixed (DLP) flame, we propose using acetone/toluene planar laser-induced fluorescence (PLIF) technology to simultaneously measure the concentrations of the two components. Appropriate excitation laser wavelength and filters are used to assess the influence of acetone and toluene on each other's fluorescence signal at room temperature. Experimental results show that acetone has a strong absorption effect on toluene's fluorescence signal, the effective absorption cross-section is 5.77× 10-20 cm-2. Acetone has an obvious quenching effect on the toluene fluorescence signal, and the Stern-Volmer coefficient is 0.50 kPa-1. The collisions between the molecules of toluene and acetone will lead to the enhancement of the fluorescence signal of acetone, and the enhancement coefficient is exponential with the acetone's concentration. The quantitative relationship between the fluorescence intensity and the concentrations of the two tracers is obtained by establishing the photophysical model of toluene and acetone's fluorescence signals.
Keywords:  laser-induced fluorescence      two tracers      absorption cross-section      fluorescence quantum yield  
Received:  23 May 2020      Revised:  28 August 2020      Accepted manuscript online:  01 September 2020
PACS:  42.62.Fi (Laser spectroscopy)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51536002, 61405048, and 91441130).
Corresponding Authors:  Corresponding author. E-mail: pengjiangbo_2004@126.com   

Cite this article: 

Guang Chang(常光), Xin Yu(于欣), Jiangbo Peng(彭江波), Yang Yu(于杨), Zhen Cao(曹振), Long Gao(高龙), Minghong Han(韩明宏), and Guohua Wu(武国华) Absorption, quenching, and enhancement by tracer in acetone/toluene laser-induced fluorescence 2020 Chin. Phys. B 29 124212

[1] Sun P, Yuan Y, Ge B, Tian Y, Zhang Z and Zang S 2017 Energy & Fuels 31 10060 DOI: 10.1021/acs.energyfuels.7b01302
[2] Gamal A M, Ibrahim A H, Ali E-M M, Elmahallawy F M, Abdelhafez A, Nemitallah M A, Rashwan S S and Habib M A 2017 Energy & Fuels 31 1980 DOI: 10.1021/acs.energyfuels.6b02874
[3] Park J, Nguyen T H, Joung D, Huh K Y and Lee M C 2013 Energy & Fuels 27 1643 DOI: 10.1021/ef301741t
[4] Xie G, Qi H Y, Li Y H, Feng C and Chen X L 2010 Proceedings of the Chinese Society of Electrical Engineering 30 51 (in Chinese) DOI: 10.13334/j.0258-8013.pcsee.2010.20.013
[5] Di Benedetto A Chemical Engineering Science 99 265 DOI: 10.1016/j.ces.2013.05.0562013
[6] Zhao W, Liu L, Shen W, Lyu Y and Qiu P 2019 Energy & Fuels 33 2547 DOI: 10.1021/acs.energyfuels.8b04492
[7] Kang T and Kyritsis D C Combustion Science and Technology 177 2191 DOI: 10.1080/001022005002408362005
[8] Balusamy S, Cessou A and Lecordier B Combustion and Flame 161 427 DOI: 10.1016/j.combustflame.2013.08.0232014
[9] Zhang J and Abraham J Combustion and Flame 163 461 DOI: 10.1016/j.combustflame.2015.10.0202016
[10] Wei W, Yu Z, Zhou T and Ye T International Journal of Hydrogen Energy 43 9036 DOI: 10.1016/j.ijhydene.2018.03.1672018
[11] Nwaboh J A, Werhahn O, Ortwein P, Schiel D and Ebert V Measurement Science & Technology 24 015202 DOI: 10.1088/0957-0233/24/1/0152022012
[12] Gao Y, Zhang Y, Dong C, Ying H and Liu W International Symposium on Optoelectronic Technology and Application 10155 101552R DOI: 10.1117/12.22471412016
[13] Ferioli F, Puzinauskas P V and Buckley S G Applied Spectroscopy 57 1183 DOI: 10.1366/000370203606960712003
[14] Joshi S, Olsen D B, Dumitrescu C, Puzinauskas P V and Yalin A P Applied Spectroscopy 63 549 DOI: 10.1366/0003702097883468692009
[15] Dou H, Dong L, Zhang L, Jia S and Yin W Applied Spectroscopy 62 458 DOI: 10.1366/0003702087840467862008
[16] Hanson R K, Seitzman J M and Paul P H Appl. Phys. B 50 441 DOI: 10.1007/BF004087701990
[17] Yu X, Yang Z, Peng J B, Zhang L, Ma Y F, Yang C B, Li X H and Sun R 2015 Chin. Phys. B 24 114204 DOI: 10.1088/1674-1056/24/11/114204
[18] Chen S, Su T, Li Z S, Bai H C, Yan B and Yang F R 2016 Chin. Phys. B 25 100701 DOI: 10.1088/1674-1056/25/10/100701
[19] Lozano A, Yip B and Hanson R K 1992 Exp. Fluids 13 369 DOI: 10.1007/BF00223244
[20] Hartwig J, Mittal G, Kumar K and Sung C J 2017 Appl. Phys. B 123 191 DOI: 10.1007/s00340-017-6774-z
[21] Thurber M C and Hanson R K Appl. Phys. B 69 229 DOI: 10.1007/s0034000507991999
[22] Thurber M C, Grisch F, Kirby B J, Votsmeier M and Hanson R K Appl. Opt. 37 4963 DOI: 10.1364/AO.37.0049631998
[23] Koch J D and Hanson R K Appl. Phys. B 76 319 DOI: 10.1007/s00340-002-1084-42003
[24] Modica V, Morin C and Guibert P Appl. Phys. B 87 193 DOI: 10.1007/s00340-006-2548-82007
[25] Koban W, Koch J D, Hanson R K and Schulz C Phys. Chem. Chem. Phys. 6 2940 DOI: 10.1039/b400997e2004
[26] Koban W, Koch J D, Hanson R K and Schulz C Appl. Phys. B 80 777 DOI: 10.1007/s00340-005-1769-62005
[27] Faust S, Tea G, Dreier T and Schulz C Appl. Phys. B 110 81 DOI: 10.1007/s00340-012-5254-82013
[28] Zimmermann F P, Koban W, Roth C M, Herten D P and Schulz C Chem. Phys. Lett. 426 248 DOI: 10.1016/j.cplett.2006.05.1352006
[29] Meyer T R, King G F, Martin G C, Lucht R P, Schauer F R and Dutton J C Exp. Fluids 32 603 DOI: 10.1007/s00348-001-0372-92002
[30] Koban W, Koch J D, Hanson R K and Schulz C Appl. Phys. B 80 147 DOI: 10.1007/s00340-004-1715-z2005
[31] Koban W, Schorr J and Schulz C Appl. Phys. B 74 111 DOI: 10.1007/s0034001007692002
[32] Bayrakceken F Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 71 572 DOI: 10.1016/j.saa.2007.12.0402008
[1] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[2] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
[3] Absolute density measurement of nitrogen dioxide with cavity-enhanced laser-induced fluorescence
Zheng-Hai Yang(杨正海), Yong-Cheng Yang(杨永成), Lian-Zhong Deng(邓联忠), Jian-Ping Yin(印建平). Chin. Phys. B, 2018, 27(10): 100601.
[4] Numerical analysis of quantitative measurement of hydroxyl radical concentration using laser-induced fluorescence in flame
Shuang Chen(陈爽), Tie Su(苏铁), Yao-Bang Zheng(郑尧邦), Li Chen(陈力), Ting-Xu Liu(刘亭序), Ren-Bing Li(李仁兵), Fu-Rong Yang(杨富荣). Chin. Phys. B, 2016, 25(6): 060703.
[5] LIF diagnostics of hydroxyl radical in a methanol containing atmospheric-pressure plasma jet
Mu-Yang Qian(钱沐杨), San-Qiu Liu(刘三秋), Xue-Kai Pei(裴学凯), Xin-Pei Lu(卢新培), Jia-Liang Zhang(张家良), De-Zhen Wang(王德真). Chin. Phys. B, 2016, 25(10): 105205.
[6] Quantitative measurement of hydroxyl radical (OH) concentration in premixed flat flame by combining laser-induced fluorescence and direct absorption spectroscopy
Shuang Chen(陈爽), Tie Su(苏铁), Zhong-Shan Li(李中山), Han-Chen Bai(白菡尘), Bo Yan(闫博), Fu-Rong Yang(杨富荣). Chin. Phys. B, 2016, 25(10): 100701.
[7] Quantitative measurements of one-dimensional OH absolute concentration profiles in a methane/air flat flame by bi-directional laser-induced fluorescence
Yu Xin (于欣), Yang Zhen (杨振), Peng Jiang-Bo (彭江波), Zhang Lei (张蕾), Ma Yu-Fei (马欲飞), Yang Chao-Bo (杨超博), Li Xiao-Hui (李晓晖), Sun Rui (孙锐). Chin. Phys. B, 2015, 24(11): 114204.
No Suggested Reading articles found!