Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 084211    DOI: 10.1088/1674-1056/28/8/084211
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Non-crossover sub-Doppler DAVLL in selective reflection scheme

Lin-Jie Zhang(张临杰)1,2, Hao Zhang(张好)1,2, Yan-Ting Zhao(赵延霆)1,2, Lian-Tuan Xiao(肖连团)1,2, Suo-Tang Jia(贾锁堂)1,2
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  We demonstrate a non-crossover sub-Doppler dichroic atomic vapor laser locking (DAVLL) in selective reflection scheme, which allows us to obtain a modulation-free laser locking with wide tuneable range. The dependence of peak-to-peak amplitude, tuneable range and the slope near the zero-crossing point of error signal on the frequency shift induced by the magnetic fields are studied. The adjustable error signal by the varying external magnetic field can offer the laser locking from the order of tens MHz to hundreds MHz. The ultimate dither of locked laser frequency is less than 0.5 MHz. The square root of Allan variance of the error signals reaches a minimum of 3×10-10 for an averaging time of 130 s.
Keywords:  reflection spectrum      DAVLL      sub-Doppler frequency stabilization  
Received:  20 March 2019      Revised:  06 May 2019      Accepted manuscript online: 
PACS:  42.62.Fi (Laser spectroscopy)  
  78.40.-q (Absorption and reflection spectra: visible and ultraviolet)  
  32.10.Fn (Fine and hyperfine structure)  
  32.30.-r (Atomic spectra?)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0304203 and 2016YFF0200104), the National Natural Science Foundation of China (Grant No. 61827824), the Fund from the BAIREN Plan of Shanxi Province, China, and the Funding for Shanxi “1331 Project” Key Subjects Construction, China.
Corresponding Authors:  Yan-Ting Zhao     E-mail:  zhaoyt@sxu.edu.cn

Cite this article: 

Lin-Jie Zhang(张临杰), Hao Zhang(张好), Yan-Ting Zhao(赵延霆), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂) Non-crossover sub-Doppler DAVLL in selective reflection scheme 2019 Chin. Phys. B 28 084211

[1] Nasim H and Jamil Y 2013 Laser Phys. Lett. 10 043001
[2] Hori H, Kitayama Y, Kitano M, Yabuzaki T and Ogawa T 1983 IEEE J. Quantum Electron. 19 169
[3] Wieman C and Hänsch T W 1976 Phys. Rev. Lett. 36 1170
[4] Pearman C P, Adams C S, Cox S G, Griffin P F, Smith D A and Hughes I G 2002 J. Phys. B: At., Mol. Opt. Phys. 35 5141
[5] Yoshikawa Y, Umeki T, Mukae T, Torii Y and Kuga T 2003 Appl. Opt. 42 6645
[6] Kerckhoff J A, Bruzewicz C D, Uhl R and Majumder P K 2005 Rev. Sci. Instrum. 76 093108
[7] Corwin K L, Lu Z T, Hand C F, Epstein R J and Wieman C E 1998 Appl. Opt. 37 3295
[8] Wasik G, Gawlik W, Zachorowski J and Zawadzki W 2002 Appl. Phys. B 75 613
[9] Yin S, Liu H, Qian J, Hong T, Xu Z and Wang Y 2012 Opt. Commun. 285 5169
[10] Harris M L, Cornish S L, Tripathi A and Hughes I G 2008 J. Phys. B: At., Mol. Opt. Phys. 41 085401
[11] Pichler M and Hall D C 2012 Opt. Commun. 285 50
[12] Su D Q, Meng T F, Ji Z H, Yuan J P, Zhao Y T, Xiao L T and Jia S T 2014 Appl. Opt. 53 7011
[13] Banerjee A and Natarajan V 2003 Opt. Lett. 28 1912
[14] Zhao J M, Zhao Y T, Wang L R, Xiao L T and Jia S T 2002 Appl. Phys. B 75 553
[15] Li R N, Jia S T, Bloch D and Ducloy M 1998 Opt. Commun. 146 186
[16] Wood R 1909 Philosophical Magazine Series 6 18 187
[17] Schuller F, Nienhuis G and Ducloy M 1991 Phys. Rev. A 43 443
[18] Burgmans A L J and Woerdman J P 1976 J. Phys. France 37 677
[19] Kondo R, Tojo S, Fujimoto T and Hasuo M 2006 Phys. Rev. A 73 062504
[1] Femtosecond laser-induced Cu plasma spectra at different laser polarizations and sample temperatures
Yitong Liu(刘奕彤), Qiuyun Wang(王秋云), Luyun Jiang(蒋陆昀), Anmin Chen(陈安民), Jianhui Han(韩建慧), and Mingxing Jin(金明星). Chin. Phys. B, 2022, 31(10): 105201.
[2] High-sensitivity methane monitoring based on quasi-fundamental mode matched continuous-wave cavity ring-down spectroscopy
Zhe Li(李哲), Shuang Yang(杨爽), Zhirong Zhang(张志荣), Hua Xia(夏滑), Tao Pang(庞涛),Bian Wu(吴边), Pengshuai Sun(孙鹏帅), Huadong Wang(王华东), and Runqing Yu(余润磬). Chin. Phys. B, 2022, 31(9): 094207.
[3] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[4] Generation of stable and tunable optical frequency linked to a radio frequency by use of a high finesse cavity and its application in absorption spectroscopy
Yueting Zhou(周月婷), Gang Zhao(赵刚), Jianxin Liu(刘建鑫), Xiaojuan Yan(闫晓娟), Zhixin Li(李志新), Weiguang Ma(马维光), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(6): 064206.
[5] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[6] Observation of photon recoil effects in single-beam absorption spectroscopy with an ultracold strontium gas
Fachao Hu(胡发超), Canzhu Tan(檀灿竹), Yuhai Jiang(江玉海), Matthias Weidemüller, and Bing Zhu(朱兵). Chin. Phys. B, 2022, 31(1): 016702.
[7] An approach to gas sensors based on tunable diode laser incomplete saturated absorption spectra
Wei Nie(聂伟), Zhen-Yu Xu(许振宇), Rui-Feng Kan(阚瑞峰), Mei-Rong Dong(董美蓉), and Ji-Dong Lu(陆继东). Chin. Phys. B, 2021, 30(6): 064213.
[8] Setup of a dipole trap for all-optical trapping
Miao Wang(王淼), Zheng Chen(陈正), Yao Huang(黄垚), Hua Guan(管桦), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(5): 053702.
[9] A pressure-calibration method of wavelength modulation spectroscopy in sealed microbial growth environment
Kun-Yang Wang(王坤阳), Jie Shao(邵杰), Li-Gang Shao(邵李刚), Jia-Jin Chen(陈家金), Gui-Shi Wang(王贵师), Kun Liu(刘琨), and Xiao-Ming Gao(高晓明). Chin. Phys. B, 2021, 30(5): 054203.
[10] A 532 nm molecular iodine optical frequency standard based on modulation transfer spectroscopy
Feihu Cheng(程飞虎), Ning Jin(金宁), Fenglei Zhang(张风雷), Hui Li(李慧), Yuanbo Du(杜远博), Jie Zhang(张洁), Ke Deng(邓科), and Zehuang Lu(陆泽晃). Chin. Phys. B, 2021, 30(5): 050603.
[11] Analysis of relative wavelength response characterization and its effects on scanned-WMS gas sensing
Dao Zheng(郑道), Zhi-Min Peng(彭志敏), Yan-Jun Ding(丁艳军), and Yan-Jun Du(杜艳君). Chin. Phys. B, 2021, 30(4): 044210.
[12] Controlling multiple optomechanically induced transparency in the distant cavity-optomechanical system
Rui-Jie Xiao(肖瑞杰), Gui-Xia Pan(潘桂侠), and Xiao-Ming Xiu(修晓明). Chin. Phys. B, 2021, 30(3): 034209.
[13] Absorption, quenching, and enhancement by tracer in acetone/toluene laser-induced fluorescence
Guang Chang(常光), Xin Yu(于欣), Jiangbo Peng(彭江波), Yang Yu(于杨), Zhen Cao(曹振), Long Gao(高龙), Minghong Han(韩明宏), and Guohua Wu(武国华). Chin. Phys. B, 2020, 29(12): 124212.
[14] Effect of the distance between focusing lens and target surface on quantitative analysis of Mn element in aluminum alloys by using filament-induced breakdown spectroscopy
Xue-Tong Lu(陆雪童), Shang-Yong Zhao(赵上勇), Xun Gao(高勋), Kai-Min Guo(郭凯敏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2020, 29(12): 124209.
[15] Progress on the 40Ca+ ion optical clock
Baolin Zhang(张宝林), Yao Huang(黄垚), Huaqing Zhang(张华青), Yanmei Hao(郝艳梅), Mengyan Zeng(曾孟彦), Hua Guan(管桦), Kelin Gao(高克林). Chin. Phys. B, 2020, 29(7): 074209.
No Suggested Reading articles found!