CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Discrete modulational instability and bright localized spin wave modes in easy-axis weak ferromagnetic spin chains involving the next-nearest-neighbor coupling |
Jiayu Xie(谢家玉)1, Zhihao Deng(邓志豪)1, Xia Chang(昌霞)1, Bing Tang(唐炳)1,2 |
1 College of Physics, Mechanical and Electrical Engineering, Jishou University, Jishou 416000, China;
2 The Collaborative Innovation Center of Manganese-Zinc-Vanadium Industrial Technology, Jishou University, Jishou 416000, China |
|
|
Abstract We report a theoretical work on the properties of modulational instability and bright type nonlinear localized modes in one-dimensional easy-axis weak ferromagnetic spin lattices involving next-nearest-neighbor couplings. With a linear stability analysis, we calculate the growth rates of the modulational instability, and plot the instability regions. When the strength of the next-nearest-neighbor coupling is large enough, two new asymmetric modulational instability regions appear near the boundary of the first Brillouin zone. Furthermore, analytical forms of the bright nonlinear localized modes are constructed by means of a quasi-discreteness approach. The influence of the next-nearest-neighbor coupling on the Brillouin zone center mode and boundary mode are discussed. In particular, we discover a reversal phenomenon of the propagation direction of the Brillouin zone boundary mode.
|
Received: 12 March 2019
Revised: 04 May 2019
Accepted manuscript online:
|
PACS:
|
75.10.Jm
|
(Quantized spin models, including quantum spin frustration)
|
|
75.30.Ds
|
(Spin waves)
|
|
63.20.Pw
|
(Localized modes)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604121 and 11875126), the Natural Science Fund Project of Hunan Province, China (Grant No. 2017JJ3255), the National College Students' Innovation Entrepreneurship Training Program, China (Grant No. 201810531014), and the Scientific Research Fund of Hunan Provincial Education Department, China (Grant No. 17B212). |
Corresponding Authors:
Bing Tang
E-mail: bingtangphy@jsu.edu.cn
|
Cite this article:
Jiayu Xie(谢家玉), Zhihao Deng(邓志豪), Xia Chang(昌霞), Bing Tang(唐炳) Discrete modulational instability and bright localized spin wave modes in easy-axis weak ferromagnetic spin chains involving the next-nearest-neighbor coupling 2019 Chin. Phys. B 28 077501
|
[1] |
Baronio F, Chen S, Grelu P, Wabnitz S and Conforti M 2015 Phys. Rev. A 91 033804
|
[2] |
Wamba E, Mohamadou A, Ekogo T B, Atangana J and Kofane T C 2011 Phys. Lett. A 375 4288
|
[3] |
Stockhofe J and Schmelcher P 2016 Physica D 328-329 9
|
[4] |
Kibler B, Chabchoub A, Gelash A, Akhmediev N and Zakharov V E 2015 Phys. Rev. X 5 041026
|
[5] |
Zhang J H, Wang L and Liu C 2017 Proc. R. Soc. A 473 20160681
|
[6] |
Cai L Y, Wang X, Wang L, Li M, Liu Y and Shi Y Y 2017 Nonlin. Dynam. 90 2221
|
[7] |
Wang L, Zhang L L, Zhu Y J, Qi F H, Wang P, Guo R and Li M 2016 Commun. Nonlinear Sci. Numer. Simulat. 40 216
|
[8] |
Tabi C B, Mohamadou A and Kofane T C 2010 Eur. Phys. J. B 74 151
|
[9] |
Gori G, Macrí T and Trombettoni A 2013 Phys. Rev. E 87 032905
|
[10] |
Xie Y D 2018 Acta Phys. Sin. 67 197502 (in Chinese)
|
[11] |
Yang C Y, Wazwaz A M, Zhou Q and Liu W J 2019 Laser Phys. 29 035401
|
[12] |
Liu W J, Pang L H, Shen Z W, Lei M, Teng H and Wei Z Y 2016 Photon. Res. 4 111
|
[13] |
Liu W J, Pang L H, Han H N, Tian W L, Chen Hao, Lei M, Yan P G and Wei Z Y 2015 Opt. Exp. 23 26023
|
[14] |
Su W H, Xie J Y, Wu T L and Tang B 2018 Chin. Phys. B 27 097501
|
[15] |
Wang L, Zhu Y J, Wang Z Q, Xu T, Qi F H and Xue Y S 2016 J. Phys. Soc. Jpn. 85 024001
|
[16] |
Baronio F, Conforti M, Degasperis A, Lombardo S, Onorato M and Wabnitz S 2014 Phys. Rev. Lett. 113 034101
|
[17] |
Marklund M and Shukla P K 2006 Phys. Rev. E 73 057601
|
[18] |
Meier J, Stegeman G I, Christodoulides D N, Silberberg Y, Morandotti R, Yang H, Salamo G, Sorel M and Aitchison J S 2004 Phys. Rev. Lett. 92 163902
|
[19] |
Carr L D and Brand J 2004 Phys. Rev. Lett. 92 040401
|
[20] |
Kivshar Y S and Peyrard M 1992 Phys. Rev. A 46 3198
|
[21] |
Kivshar Y S 1993 Phys. Lett. A 173 172
|
[22] |
Abdullaev F K, Bouketir A, Messikh A and Umarov B A 2007 Physica D 232 54
|
[23] |
Daumont I, Dauxois T and Peyrard M 1997 Nonlinearity 10 617
|
[24] |
Yoshimura K 2004 Phys. Rev. E 70 016611
|
[25] |
Dauxois T, Khomeriki R and Ruffo S 2007 Eur. Phys. J. Spec. Top. 147 3
|
[26] |
Lai R and Sievers A J 1999 Phys. Rep. 314 147
|
[27] |
Lai R and Sievers A J 1998 Phys. Rev. B 57 3433
|
[28] |
Lai R, Kiselev S A and Sievers A J 1997 Phys. Rev. B 56 5345
|
[29] |
Huang G, Zhang S and Hu B 1998 Phys. Rev. B 58 9194
|
[30] |
Nguenang J P, Peyrard M, Kenfack A J and Kofané T C 2005 J. Phys.: Condens. Matter 17 3083
|
[31] |
Lakshmanan M, Subash B and Saxena A 2014 Phys. Lett. A 378 1119
|
[32] |
Kavitha L, Mohamadou A, Parasuraman E, Gopi D, Akila N and Prabhu A 2016 J. Magn. Magn. Mater. 404 91
|
[33] |
Tang B, Li G L and Fu M 2017 J. Magn. Magn. Mater. 426 429
|
[34] |
Kavitha L, Parasuraman E, Gopi D, Prabhu A and Vicencio R A 2016 J. Magn. Magn. Mater. 401 394
|
[35] |
Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241
|
[36] |
Moriya T 1960 Phys. Rev. Lett. 4 228
|
[37] |
Tang B, Li D J and Tang Y 2014 Chaos 24 023113
|
[38] |
Di K, Zhang V L, Lim H S, Ng S C, Kuok M H, Yu J, Yoon J, Qiu X and Yang H 2015 Phys. Rev. Lett. 114 047201
|
[39] |
Moon J H, Seo S M, Lee K J, Kim K W, Ryu J, Lee H W, McMichael R D and Stiles M D 2013 Phys. Rev. B 88 184404
|
[40] |
Djoufack Z I, Kenfack Jiotsa A and Nguenang J P 2012 Eur. Phys. J. B 85 96
|
[41] |
Brächer T, Boulle O, Gaudin G and Pirro P 2017 Phys. Rev. B 95 064429
|
[42] |
Je S G, Kim D H, Yoo S C, Min B C, Lee K J and Choe S B 2013 Phys. Rev. B 88 214401
|
[43] |
Ding J, Wu T, Chang X and Tang B 2018 Commun. Nonlinear Sci. Numer. Simulat. 59 349
|
[44] |
Tang B and Deng K 2017 Nonlin. Dynam. 88 2417
|
[45] |
Dyson F J 1956 Phys. Rev. 102 1217
|
[46] |
Dyson F J 1956 Phys. Rev. 102 1230
|
[47] |
Glauber R J 1963 Phys. Rev. 131 2766
|
[48] |
Smith H 1991 Introduction to Quantum Mechanics (Singapore: World Scientific)
|
[49] |
Li P, Wang L, Kong L Q, Wang X and Xie Z Y 2018 Appl. Math. Lett. 85 110
|
[50] |
Huang G, Shi Z P and Xu Z 1993 Phys. Rev. B 47 14561
|
[51] |
Ablowitz M and Segur H 1985 Solitons and the Inverse Scattering Transform (Philadelphia: SIAM)
|
[52] |
Liu W, Yu W, Yang C, Liu M, Zhang Y and Ming L 2017 Nonlin. Dynam. 89 2933
|
[53] |
Liu W, Yang C, Liu M, Yu W, Zhang Y and Lei M 2017 Phys. Rev. E 96 042201
|
[54] |
Lü X and Lin F 2016 Commun. Nonlinear Sci. Numer. Simulat. 32 241
|
[55] |
Li Z D, Li Q Y, Li L and Liu W M 2007 Phys. Rev. E 76 026605
|
[56] |
Huang G, Xu Z and Xu W 1993 J. Phys. Soc. Jpn. 62 3231
|
[57] |
Li D C, Li X M, Li H, Tao R, Yang M and Cao Z L 2015 Chin. Phys. Lett. 32 50302
|
[58] |
Liao H J, Xie H D, Liu Z Y, Xie Z Y, Li W, Normand B and Xiang T 2016 Chin. Phys. Lett. 33 77503
|
[59] |
Liu W J, Liu M L, Liu B, Quhe R G, Lei M, Fang S B, Teng H and Wei Z Y 2019 Opt. Exp. 27 6689
|
[60] |
Dai J, Wang P S, Sun S S, Pang F, Zhang J S, Dong X L, Yue G, Jin K, Cong J Z and Sun Y 2015 Chin. Phys. Lett. 32 127503
|
[61] |
Faizi E and Eftekhari H 2015 Chin. Phys. Lett. 32 100303
|
[62] |
Fang J, Han D M, Liu H, Liu H D and Zheng T Y 2017 Acta Phys. Sin. 66 160302 (in Chinese)
|
[63] |
Wang C J, Chen A H and Gao X L 2012 Acta Phys. Sin. 61 127501 (in Chinese)
|
[64] |
Liu M L, Ouyang Y Y, Hou H R, Liu W J and Hou H R 2019 Chin. Opt. Lett. 17 020006
|
[65] |
Bai Y H, Zhou W P, Yun G H and Bai N 2011 Acta Phys. Sin. 60 056805 (in Chinese)
|
[66] |
Liu L, Sandvik A W and Guo W A 2018 Chin. Phys. B 27 087501
|
[67] |
Zhu S B, Qian J and Wang Y Z 2017 Chin. Phys. B 26 046702
|
[68] |
Yang D N, Huang Y L, Ni S L, Zhou H X, Mao Y Y, Hu W, Yuang J, Jin K, Zhang G M and Dong X L 2016 Chin. Phys. B 25 077404
|
[69] |
Li D C, Wang X P, Li H, Li X M, Yang M and Cao Z L 2016 Chin. Phys. Lett. 33 50301
|
[70] |
Li Y F, Shen Y Y, Kong X M 2012 Acta Phys. Sin. 61 107501 (in Chinese)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|