Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 076801    DOI: 10.1088/1674-1056/28/7/076801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Adsorption behavior of triphenylene on Ru(0001) investigated by scanning tunneling microscopy

Li-Wei Jing(井立威)1, Jun-Jie Song(宋俊杰)3, Yu-Xi Zhang(张羽溪)4, Qiao-Yue Chen(陈乔悦)1, Kai-Kai Huang(黄凯凯)1, Han-Jie Zhang(张寒洁)1, Pi-Mo He(何丕模)1,2
1 Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China;
2 Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China;
3 School of Information Science and Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China;
4 Department of Fundamental and Social Science, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
Abstract  

As a representative of small aromatic molecules, triphenylene (TP) has markedly high carrier mobility and is an ideal precursor for building graphene nanostructures. We mainly investigated the adsorption behavior of TP molecules on Ru(0001) by using scanning tunneling microscopy (STM). In submonolayer regime, TP molecules are randomly dispersed on Ru(0001) and the TP overlayer can be thoroughly dehydrogenated and converted into graphene islands at 700 K. Due to weak interaction between TP molecules and graphene, the grooves formed among graphene islands have confinement effect on TP molecules. TP adopts a flat-lying adsorption mode and has two adsorption configurations with the 3-fold molecular axis aligned almost parallel or antiparallel to the[1100] direction of the substrate. At TP coverages of 0.6 monolayer (ML) and 0.8 ML, the orientational distributions of the two adsorption configurations are equal. At about 1.0 ML, we find the coexistence of locally ordered and disordered phases. The ordered phase includes two sets of different superstructures with the symmetries of (√19×√19)R23.41° and p(4×4), respectively. The adsorption behavior of TP on Ru(0001) can be attributed to the delicate balance between molecule-substrate and molecule-molecule interactions.

Keywords:  self-assembly      ordered superstructure      scanning tunneling microscopy  
Received:  06 April 2019      Revised:  03 May 2019      Accepted manuscript online: 
PACS:  68.43.Fg (Adsorbate structure (binding sites, geometry))  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  68.43.-h (Chemisorption/physisorption: adsorbates on surfaces)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0503100) and the National Natural Science Foundation of China (Grant No. 11790313).

Corresponding Authors:  Han-Jie Zhang, Pi-Mo He     E-mail:  zhj_fox@zju.edu.cn;phypmhe@zju.edu.cn

Cite this article: 

Li-Wei Jing(井立威), Jun-Jie Song(宋俊杰), Yu-Xi Zhang(张羽溪), Qiao-Yue Chen(陈乔悦), Kai-Kai Huang(黄凯凯), Han-Jie Zhang(张寒洁), Pi-Mo He(何丕模) Adsorption behavior of triphenylene on Ru(0001) investigated by scanning tunneling microscopy 2019 Chin. Phys. B 28 076801

[1] Kaneko S, Murai D, Marques Gonzalez S, Nakamura H, Komoto Y, Fujii S, Nishino T, Ikeda K, Tsukagoshi K and Kiguchi M 2016 J. Am. Chem. Soc. 138 1294
[2] Komoto Y, Fujii S, Iwane M and Kiguchi M 2016 J. Mater. Chem. C 4 8842
[3] Trasobares J, Vuillaume D, Theron D and Clement N 2016 Nat Commun. 7 12850
[4] Yan S C, Xie N, Gong H Q, Sun Q, Guo Y, Shan X Y and Lu X H 2012 Chin. Phys. Lett. 29 046803
[5] Li J, Gottardi S, Solianyk L, Moreno Lopez J C and Stohr M 2016 J. Phys. Chem. C 120 18093
[6] DeLoach A S, Conrad B R, Einstein T L and Dougherty D B 2017 J. Chem. Phys. 147 184701
[7] Jeon S, Doak P W, Sumpter B G, Ganesh P and Maksymovych P 2016 ACS Nano 10 7821
[8] Parschau M, Fasel R, Ernst K H, Groning O, Brandenberger L, Schillinger R, Greber T, Seitsonen A P, Wu Y T and Siegel J S 2007 Angew. Chem. Int. Ed. Engl. 46 8258
[9] Abb S, Harnau L, Gutzler R, Rauschenbach S and Kern K 2016 Nat Commun. 7 10335
[10] Otero R, Gallego J M, de Parga A L, Martin N and Miranda R 2011 Adv. Mater. 23 5148
[11] Kumar A, Banerjee K and Liljeroth P 2017 Nanotechnology 28 082001
[12] Jarvinen P, Hamalainen S K, Banerjee K, Hakkinen P, Ijas M, Harju A and Liljeroth P 2013 Nano Lett. 13 3199
[13] Caputo M, Panighel M, Lisi S, et al. 2016 Nano Lett. 16 3409
[14] Ashkenasy G, Cahen D, Cohen R, Shanzer A and Vilan A 2002 Acc. Chem. Res. 35 121
[15] Kim J H, Ribierre J C, Yang Y S, Adachi C, Kawai M, Jung J, Fukushima T and Kim Y 2016 Nat Commun. 7 10653
[16] Peyrot D and Silly F 2016 ACS Nano 10 5490
[17] Han Z, Czap G, Chiang C L, Xu C, Wagner P J, Wei X, Zhang Y, Wu R and Ho W 2017 Science 358 206
[18] Ren J, Bao D L, Dong L, Gao L, Wu R, Yan L, Wang A, Yan J, Wang Y, Du S X, Huan Q and Gao H J 2017 Chin. Phys. B 26 086801
[19] Wang H, Sun X, Li D, Zhang X, Chen S, Shao W, Tian Y and Xie Y 2017 J. Am. Chem. Soc. 139 2468
[20] Enache M, Maggini L, Llanes Pallas A, Jung T A, Bonifazi D and Stöhr M 2014 J. Phys. Chem. C 118 15286
[21] Dou R F, Ma X C, Xi L, Yip H L, Wong K Y, Lau W M, Jia J F, Xue Q K, Yang W S, Ma H and Jen A K 2006 Langmuir 22 3049
[22] Xu L, Ding S Y, Liu J, Sun J, Wang W and Zheng Q Y 2016 Chem. Commun. (Camb) 52 4706
[23] Heller L E, Whitleigh J, Roth D F, Oherlein E M, Lucci F R, Kolonko K J and Plass K E 2012 Langmuir 28 14855
[24] Yokoyama T, Yokoyama S, Kamikado T, Okuno Y and Mashiko S 2001 Nature 413 619
[25] Gao H Y, Wagner H, Held P A, Du S, Gao H J, Studer A and Fuchs H 2015 Appl. Phys. Lett. 106 081606
[26] Lin N, Dmitriev A, Weckesser J, Barth J V and Kern K 2002 Angew. Chem. Int. Ed. Engl. 41 4779
[27] Quiñonero D, Frontera A, Deyá P M, Alkorta I and Elguero J 2008 Chem. Phys. Lett. 460 406
[28] Wen R, Yan C J, Yan H J, Pan G B and Wan L J 2011 Chem. Commun. (Camb) 47 6915
[29] Zyss J, Ledoux Rak I, Weiss H C, Bläser D, Boese R, Thallapally P K, Thalladi V R and Desiraju G R 2003 Chem. Mater. 15 3063
[30] Gardner J W 2004 Electronic Noses & Sensors for the Detection of Explosives (1st edn.) (Dordrecht: Springer) pp. 29-37
[31] Katsonis N, Marchenko A and Fichou D 2003 J. Am. Chem. Soc. 125 13682
[32] Xu J, Li T, Geng Y, Zhao D, Deng K, Zeng Q and Wang C 2015 J. Phys. Chem. C 119 9227
[33] Kumar S 2004 Liq. Cryst. 31 1037
[34] Turner R J 2015 Triphenylene as a Scaffold for New Molecular Materials (Ph.D. Thesis) (Norwich: University of East Anglia)
[35] Gupta M and Pal S K 2016 Langmuir 32 1120
[36] Wyrick J, Kim D H, Sun D, Cheng Z, Lu W, Zhu Y, Berl, K, Kim Y S, Rotenberg E, Luo M, Hyldgaard P, Einstein T L and Bartels L 2011 Nano Lett. 11 2944
[37] Lu B, Zhang H, Li H, Bao S, He P and Hao T 2003 Phys. Rev. B 68 125410
[38] Horcas I, Fernandez R, Gomez Rodriguez J M, Colchero J, Gomez Herrero J and Baro A M 2007 Rev. Sci. Instrum. 78 013705
[39] Cui Y, Fu Q, Zhang H and Bao X 2011 Chem. Commun. (Camb) 47 1470
[40] Gao J F and Ding F 2015 J. Cluster Sci. 26 347
[41] Moritz W, Wang B, Bocquet M L, Brugger T, Greber T, Wintterlin J and Gunther S 2010 Phys. Rev. Lett. 104 136102
[42] Liao Q, Zhang H J, Wu K, Li H Y, Bao S N and He P 2010 Appl. Surf. Sci. 257 82
[43] Feng W, Lei S, Li Q and Zhao A 2011 J. Phys. Chem. C 115 24858
[44] Cai Y, Zhang H, Song J, Zhang Y, Rehman A U and He P 2015 Nanotechnology 26 295601
[45] Song J, Zhang H, Zhang Y, Cai Y, Bao S and He P 2016 Appl. Surf. Sci. 367 424
[46] Wang C S, Bartelt N C, Ragan R and Thurmer K 2018 Carbon 129 537
[47] Zint S, Ebeling D, Ahles S, Wegner H A and Schirmeisen A 2016 J. Phys. Chem. C 120 1615
[48] Weiss K, Gebert S, Wühn M, Wadepohl H and Wöll C 1998 J. Vac. Sci. Technol. A 16 1017
[49] Zhang X, Wang H, Wang S, Shen Y, Yang Y, Deng K, Zhao K, Zeng Q and Wang C 2012 J. Phys. Chem. C 117 307
[50] Rui G, Jialin Z, Songtao Z, Xiaojiang Y, Shu Z, Shuo S, Zhenyu L and Wei C 2017 Acta Phys. -Chim. Sin. 33 627
[51] Glöckler K, Seidel C, Soukopp A, Sokolowski M, Umbach E, Böhringer M, Berndt R and Schneider W D 1998 Surf. Sci. 405 1
[52] Nowakowski R, Seidel C and Fuchs H 2001 Phys. Rev. B 63 195418
[53] Hu F, Zhang H, Mao H, Liao Q and He P 2011 J. Chem. Phys. 134 194702
[54] Mantooth B A, Sykes E C H, Han P, Moore A M, Donhauser Z J, Crespi V H and Weiss P S 2007 J. Phys. Chem. C 111 6167
[55] Witte G and Wöll C 2004 J. Mater. Res. 19 1889
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[3] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[4] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[5] Robustness of the unidirectional stripe order in the kagome superconductor CsV3Sb5
Bin Hu(胡彬), Yuhan Ye(耶郁晗), Zihao Huang(黄子豪), Xianghe Han(韩相和), Zhen Zhao(赵振),Haitao Yang(杨海涛), Hui Chen(陈辉), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(5): 058102.
[6] Electronic properties and interfacial coupling in Pb islands on single-crystalline graphene
Jing-Peng Song(宋靖鹏) and Ang Li(李昂). Chin. Phys. B, 2022, 31(3): 037401.
[7] On-surface synthesis of one-dimensional carbyne-like nanostructures with sp-carbon
Wenze Gao(高文泽), Chi Zhang(张弛), Zheng Zhou(周正), and Wei Xu(许维). Chin. Phys. B, 2022, 31(12): 128101.
[8] Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction
Jian-Mei Li(李健梅), Dong Hao(郝东), Li-Huan Sun(孙丽欢), Xiang-Qian Tang(唐向前), Yang An(安旸), Xin-Yan Shan(单欣岩), and Xing-Hua Lu(陆兴华). Chin. Phys. B, 2022, 31(11): 116801.
[9] Substrate tuned reconstructed polymerization of naphthalocyanine on Ag(110)
Qi Zheng(郑琦), Li Huang(黄立), Deliang Bao(包德亮), Rongting Wu(武荣庭), Yan Li(李彦), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(1): 018202.
[10] Phase transition-induced superstructures of β-Sn films with atomic-scale thickness
Le Lei(雷乐), Feiyue Cao(曹飞跃), Shuya Xing(邢淑雅), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑锋), Shangzhi Gu(顾尚志), Yanyan Geng(耿燕燕), Shuo Mi(米烁), Hanxiang Wu(吴翰翔), Fei Pang(庞斐), Rui Xu(许瑞), Wei Ji(季威), and Zhihai Cheng(程志海). Chin. Phys. B, 2021, 30(9): 096804.
[11] Signatures of strong interlayer coupling in γ-InSe revealed by local differential conductivity
Xiaoshuai Fu(富晓帅), Li Liu(刘丽), Li Zhang(张力), Qilong Wu(吴奇龙), Yu Xia(夏雨), Lijie Zhang(张利杰), Yuan Tian(田园), Long-Jing Yin(殷隆晶), and Zhihui Qin(秦志辉). Chin. Phys. B, 2021, 30(8): 087306.
[12] Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au(111)
Huan Yang(杨欢), Yixuan Gao(高艺璇), Wenhui Niu(牛雯慧), Xiao Chang(常霄), Li Huang(黄立), Junzhi Liu(刘俊治), Yiyong Mai(麦亦勇), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(7): 077306.
[13] Phoretic self-assembly of active colloidal molecules
Lijie Lei(雷李杰), Shuo Wang(王硕), Xinyuan Zhang(张昕源), Wenjie Lai(赖文杰), Jinyu Wu(吴晋宇), and Yongxiang Gao(高永祥). Chin. Phys. B, 2021, 30(5): 056112.
[14] NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(5): 056802.
[15] Moiré superlattice modulations in single-unit-cell FeTe films grown on NbSe2 single crystals
Han-Bin Deng(邓翰宾), Yuan Li(李渊), Zili Feng(冯子力), Jian-Yu Guan(关剑宇), Xin Yu(于鑫), Xiong Huang(黄雄), Rui-Zhe Liu(刘睿哲), Chang-Jiang Zhu(朱长江), Limin Liu(刘立民), Ying-Kai Sun(孙英开), Xi-Liang Peng(彭锡亮), Shuai-Shuai Li(李帅帅), Xin Du(杜鑫), Zheng Wang(王铮), Rui Wu(武睿), Jia-Xin Yin(殷嘉鑫), You-Guo Shi(石友国), and Han-Qing Mao(毛寒青). Chin. Phys. B, 2021, 30(12): 126801.
No Suggested Reading articles found!