CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Adsorption behavior of triphenylene on Ru(0001) investigated by scanning tunneling microscopy |
Li-Wei Jing(井立威)1, Jun-Jie Song(宋俊杰)3, Yu-Xi Zhang(张羽溪)4, Qiao-Yue Chen(陈乔悦)1, Kai-Kai Huang(黄凯凯)1, Han-Jie Zhang(张寒洁)1, Pi-Mo He(何丕模)1,2 |
1 Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China;
2 Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China;
3 School of Information Science and Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China;
4 Department of Fundamental and Social Science, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China |
|
|
Abstract As a representative of small aromatic molecules, triphenylene (TP) has markedly high carrier mobility and is an ideal precursor for building graphene nanostructures. We mainly investigated the adsorption behavior of TP molecules on Ru(0001) by using scanning tunneling microscopy (STM). In submonolayer regime, TP molecules are randomly dispersed on Ru(0001) and the TP overlayer can be thoroughly dehydrogenated and converted into graphene islands at 700 K. Due to weak interaction between TP molecules and graphene, the grooves formed among graphene islands have confinement effect on TP molecules. TP adopts a flat-lying adsorption mode and has two adsorption configurations with the 3-fold molecular axis aligned almost parallel or antiparallel to the[1100] direction of the substrate. At TP coverages of 0.6 monolayer (ML) and 0.8 ML, the orientational distributions of the two adsorption configurations are equal. At about 1.0 ML, we find the coexistence of locally ordered and disordered phases. The ordered phase includes two sets of different superstructures with the symmetries of (√19×√19)R23.41° and p(4×4), respectively. The adsorption behavior of TP on Ru(0001) can be attributed to the delicate balance between molecule-substrate and molecule-molecule interactions.
|
Received: 06 April 2019
Revised: 03 May 2019
Accepted manuscript online:
|
PACS:
|
68.43.Fg
|
(Adsorbate structure (binding sites, geometry))
|
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
68.43.-h
|
(Chemisorption/physisorption: adsorbates on surfaces)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0503100) and the National Natural Science Foundation of China (Grant No. 11790313). |
Corresponding Authors:
Han-Jie Zhang, Pi-Mo He
E-mail: zhj_fox@zju.edu.cn;phypmhe@zju.edu.cn
|
Cite this article:
Li-Wei Jing(井立威), Jun-Jie Song(宋俊杰), Yu-Xi Zhang(张羽溪), Qiao-Yue Chen(陈乔悦), Kai-Kai Huang(黄凯凯), Han-Jie Zhang(张寒洁), Pi-Mo He(何丕模) Adsorption behavior of triphenylene on Ru(0001) investigated by scanning tunneling microscopy 2019 Chin. Phys. B 28 076801
|
[1] |
Kaneko S, Murai D, Marques Gonzalez S, Nakamura H, Komoto Y, Fujii S, Nishino T, Ikeda K, Tsukagoshi K and Kiguchi M 2016 J. Am. Chem. Soc. 138 1294
|
[2] |
Komoto Y, Fujii S, Iwane M and Kiguchi M 2016 J. Mater. Chem. C 4 8842
|
[3] |
Trasobares J, Vuillaume D, Theron D and Clement N 2016 Nat Commun. 7 12850
|
[4] |
Yan S C, Xie N, Gong H Q, Sun Q, Guo Y, Shan X Y and Lu X H 2012 Chin. Phys. Lett. 29 046803
|
[5] |
Li J, Gottardi S, Solianyk L, Moreno Lopez J C and Stohr M 2016 J. Phys. Chem. C 120 18093
|
[6] |
DeLoach A S, Conrad B R, Einstein T L and Dougherty D B 2017 J. Chem. Phys. 147 184701
|
[7] |
Jeon S, Doak P W, Sumpter B G, Ganesh P and Maksymovych P 2016 ACS Nano 10 7821
|
[8] |
Parschau M, Fasel R, Ernst K H, Groning O, Brandenberger L, Schillinger R, Greber T, Seitsonen A P, Wu Y T and Siegel J S 2007 Angew. Chem. Int. Ed. Engl. 46 8258
|
[9] |
Abb S, Harnau L, Gutzler R, Rauschenbach S and Kern K 2016 Nat Commun. 7 10335
|
[10] |
Otero R, Gallego J M, de Parga A L, Martin N and Miranda R 2011 Adv. Mater. 23 5148
|
[11] |
Kumar A, Banerjee K and Liljeroth P 2017 Nanotechnology 28 082001
|
[12] |
Jarvinen P, Hamalainen S K, Banerjee K, Hakkinen P, Ijas M, Harju A and Liljeroth P 2013 Nano Lett. 13 3199
|
[13] |
Caputo M, Panighel M, Lisi S, et al. 2016 Nano Lett. 16 3409
|
[14] |
Ashkenasy G, Cahen D, Cohen R, Shanzer A and Vilan A 2002 Acc. Chem. Res. 35 121
|
[15] |
Kim J H, Ribierre J C, Yang Y S, Adachi C, Kawai M, Jung J, Fukushima T and Kim Y 2016 Nat Commun. 7 10653
|
[16] |
Peyrot D and Silly F 2016 ACS Nano 10 5490
|
[17] |
Han Z, Czap G, Chiang C L, Xu C, Wagner P J, Wei X, Zhang Y, Wu R and Ho W 2017 Science 358 206
|
[18] |
Ren J, Bao D L, Dong L, Gao L, Wu R, Yan L, Wang A, Yan J, Wang Y, Du S X, Huan Q and Gao H J 2017 Chin. Phys. B 26 086801
|
[19] |
Wang H, Sun X, Li D, Zhang X, Chen S, Shao W, Tian Y and Xie Y 2017 J. Am. Chem. Soc. 139 2468
|
[20] |
Enache M, Maggini L, Llanes Pallas A, Jung T A, Bonifazi D and Stöhr M 2014 J. Phys. Chem. C 118 15286
|
[21] |
Dou R F, Ma X C, Xi L, Yip H L, Wong K Y, Lau W M, Jia J F, Xue Q K, Yang W S, Ma H and Jen A K 2006 Langmuir 22 3049
|
[22] |
Xu L, Ding S Y, Liu J, Sun J, Wang W and Zheng Q Y 2016 Chem. Commun. (Camb) 52 4706
|
[23] |
Heller L E, Whitleigh J, Roth D F, Oherlein E M, Lucci F R, Kolonko K J and Plass K E 2012 Langmuir 28 14855
|
[24] |
Yokoyama T, Yokoyama S, Kamikado T, Okuno Y and Mashiko S 2001 Nature 413 619
|
[25] |
Gao H Y, Wagner H, Held P A, Du S, Gao H J, Studer A and Fuchs H 2015 Appl. Phys. Lett. 106 081606
|
[26] |
Lin N, Dmitriev A, Weckesser J, Barth J V and Kern K 2002 Angew. Chem. Int. Ed. Engl. 41 4779
|
[27] |
Quiñonero D, Frontera A, Deyá P M, Alkorta I and Elguero J 2008 Chem. Phys. Lett. 460 406
|
[28] |
Wen R, Yan C J, Yan H J, Pan G B and Wan L J 2011 Chem. Commun. (Camb) 47 6915
|
[29] |
Zyss J, Ledoux Rak I, Weiss H C, Bläser D, Boese R, Thallapally P K, Thalladi V R and Desiraju G R 2003 Chem. Mater. 15 3063
|
[30] |
Gardner J W 2004 Electronic Noses & Sensors for the Detection of Explosives (1st edn.) (Dordrecht: Springer) pp. 29-37
|
[31] |
Katsonis N, Marchenko A and Fichou D 2003 J. Am. Chem. Soc. 125 13682
|
[32] |
Xu J, Li T, Geng Y, Zhao D, Deng K, Zeng Q and Wang C 2015 J. Phys. Chem. C 119 9227
|
[33] |
Kumar S 2004 Liq. Cryst. 31 1037
|
[34] |
Turner R J 2015 Triphenylene as a Scaffold for New Molecular Materials (Ph.D. Thesis) (Norwich: University of East Anglia)
|
[35] |
Gupta M and Pal S K 2016 Langmuir 32 1120
|
[36] |
Wyrick J, Kim D H, Sun D, Cheng Z, Lu W, Zhu Y, Berl, K, Kim Y S, Rotenberg E, Luo M, Hyldgaard P, Einstein T L and Bartels L 2011 Nano Lett. 11 2944
|
[37] |
Lu B, Zhang H, Li H, Bao S, He P and Hao T 2003 Phys. Rev. B 68 125410
|
[38] |
Horcas I, Fernandez R, Gomez Rodriguez J M, Colchero J, Gomez Herrero J and Baro A M 2007 Rev. Sci. Instrum. 78 013705
|
[39] |
Cui Y, Fu Q, Zhang H and Bao X 2011 Chem. Commun. (Camb) 47 1470
|
[40] |
Gao J F and Ding F 2015 J. Cluster Sci. 26 347
|
[41] |
Moritz W, Wang B, Bocquet M L, Brugger T, Greber T, Wintterlin J and Gunther S 2010 Phys. Rev. Lett. 104 136102
|
[42] |
Liao Q, Zhang H J, Wu K, Li H Y, Bao S N and He P 2010 Appl. Surf. Sci. 257 82
|
[43] |
Feng W, Lei S, Li Q and Zhao A 2011 J. Phys. Chem. C 115 24858
|
[44] |
Cai Y, Zhang H, Song J, Zhang Y, Rehman A U and He P 2015 Nanotechnology 26 295601
|
[45] |
Song J, Zhang H, Zhang Y, Cai Y, Bao S and He P 2016 Appl. Surf. Sci. 367 424
|
[46] |
Wang C S, Bartelt N C, Ragan R and Thurmer K 2018 Carbon 129 537
|
[47] |
Zint S, Ebeling D, Ahles S, Wegner H A and Schirmeisen A 2016 J. Phys. Chem. C 120 1615
|
[48] |
Weiss K, Gebert S, Wühn M, Wadepohl H and Wöll C 1998 J. Vac. Sci. Technol. A 16 1017
|
[49] |
Zhang X, Wang H, Wang S, Shen Y, Yang Y, Deng K, Zhao K, Zeng Q and Wang C 2012 J. Phys. Chem. C 117 307
|
[50] |
Rui G, Jialin Z, Songtao Z, Xiaojiang Y, Shu Z, Shuo S, Zhenyu L and Wei C 2017 Acta Phys. -Chim. Sin. 33 627
|
[51] |
Glöckler K, Seidel C, Soukopp A, Sokolowski M, Umbach E, Böhringer M, Berndt R and Schneider W D 1998 Surf. Sci. 405 1
|
[52] |
Nowakowski R, Seidel C and Fuchs H 2001 Phys. Rev. B 63 195418
|
[53] |
Hu F, Zhang H, Mao H, Liao Q and He P 2011 J. Chem. Phys. 134 194702
|
[54] |
Mantooth B A, Sykes E C H, Han P, Moore A M, Donhauser Z J, Crespi V H and Weiss P S 2007 J. Phys. Chem. C 111 6167
|
[55] |
Witte G and Wöll C 2004 J. Mater. Res. 19 1889
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|