CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Spatiotemporal Bloch states of a spin-orbit coupled Bose-Einstein condensate in an optical lattice |
Ya-Wen Wei(魏娅雯), Chao Kong(孔超), Wen-Hua Hai(海文华) |
Department of Physics and Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China |
|
|
Abstract We study the spatiotemporal Bloch states of a high-frequency driven two-component Bose-Einstein condensate (BEC) with spin-orbit coupling (SOC) in an optical lattice. By adopting the rotating-wave approximation (RWA) and applying an exact trial-solution to the corresponding quasistationary system, we establish a different method for tuning SOC via external field such that the existence conditions of the exact particular solutions are fitted. Several novel features related to the exact states are demonstrated; for example, SOC leads to spin-motion entanglement for the spatiotemporal Bloch states, SOC increases the population imbalance of the two-component BEC, and SOC can be applied to manipulate the stable atomic flow which is conducive to control quantum transport of the BEC for different application purposes.
|
Received: 31 October 2018
Revised: 06 February 2019
Accepted manuscript online:
|
PACS:
|
67.85.Hj
|
(Bose-Einstein condensates in optical potentials)
|
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
05.60.Gg
|
(Quantum transport)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11475060). |
Corresponding Authors:
Wen-Hua Hai
E-mail: whhai2005@aliyun.com
|
Cite this article:
Ya-Wen Wei(魏娅雯), Chao Kong(孔超), Wen-Hua Hai(海文华) Spatiotemporal Bloch states of a spin-orbit coupled Bose-Einstein condensate in an optical lattice 2019 Chin. Phys. B 28 056701
|
[1] |
Zhang Y P, Mao L and Zhang C W 2012 Phys. Rev. Lett. 108 035302
|
[2] |
Elliott R J 1954 Phys. Rev. 96 280
|
[3] |
Dresselhaus G, Kip A F and Kittel C 1954 Phys. Rev. 95 568
|
[4] |
Dresselhaus G 1955 Phys. Rev. 100 580
|
[5] |
Rashba E I 1960 Sov. Phys. Solid State 2 1224
|
[6] |
Liu L, Chen W X, Wang R Q and Hu L B 2018 Chin. Phys. B 27 047201
|
[7] |
Tang Z H, Yao T X and Liu J J 2017 Chin. Phys. B 26 117203
|
[8] |
Zhang L 2018 Chin. Phys. B 27 067203
|
[9] |
Lin Y J, Jiménez-García K and Spielman I B 2011 Nature 471 83
|
[10] |
Galitski V and Spielman I B 2013 Nature 494 49
|
[11] |
Huang F J, Chen Q H, and Liu W M 2014 Phys. Rev. A 89 033624
|
[12] |
Xie W F, He Y Z and Bao C G 2015 Chin. Phys. B 24 060305
|
[13] |
Yu Z F and Xue J K 2014 Phys. Rev. A 90 033618
|
[14] |
Zhang X F, Kato M, Han W, Zhang S G, and Saito H 2017 Phys. Rev. A 95 033620
|
[15] |
Liang Z X, Zhang Z D and Liu W M 2005 Phys. Rev. Lett. 94 050402
|
[16] |
Li Z J, Hai W H and Deng Y 2013 Chin. Phys. B 22 090505
|
[17] |
Hai W H, Lee C H, Chong G S and Shi L 2002 Phys. Rev. E 66 026202
|
[18] |
Lee C H, Hai W H, Shi L, Zhu X W and Gao K L 2001 Phys. Rev. A 64 053604
|
[19] |
Zhou Z, Hai W H, Deng Y and Xie Q T 2012 Chaos Solitons & Fractals 45 1423
|
[20] |
Liu L W, Gengzang D J, An X J and Wang P Y 2018 Chin. Phys. B 27 034205
|
[21] |
Abdullaev F K and Kraenkel R A 2000 Phys. Rev. A 62 023613
|
[22] |
Fujioka J, Cortés E, Pérez-Pascual R, Rodríguez R F, Espinosa A and Malomed B A 2011 Chaos 21 033120
|
[23] |
Xu J, Hai W H and Li H 2007 Chin. Phys. B 16 2244
|
[24] |
Bronski J C, Carr L D, Deconinck B and Kutz J N 2001 Phys. Rev. Lett. 86 1402
|
[25] |
Deconinck B, Kutz J N, Patterson M S and Warner B W 2003 J. Phys. A: Math. Gen. 36 5431
|
[26] |
Kostov N A, Enol'skii V Z, Gerdjikov V S, Konotop V V and Salerno M 2004 Phys. Rev. E 70 056617
|
[27] |
Zhang H F, Chen W, Yu C C, Sun L H and Xu D H 2017 Chin. Phys. B 26 080304
|
[28] |
Bronski J C, Carr L D, Deconinck B, Kutz J N and Promislow K 2001 Phys. Rev. E 63 036612
|
[29] |
Hai W H, Li C H, Fang X M and Gao K L 2004 Physica A 335 445
|
[30] |
Theodorakis S and Leontidis E 1997 J. Phys. A: Math. Gen. 30 4835
|
[31] |
Hai W H, Li Y, Xia B and Luo X 2005 Europhys. Lett 71 28
|
[32] |
Deng H M, Hai W H and Zhu Q Q 2006 J. Phys. A: Math. Gen. 39 49
|
[33] |
Deconinck B, Frigyik B A and Kutz J N 2001 Phys. Lett. A 283 177
|
[34] |
Hai W H, Chong G S, Xie Q T and Lu J 2004 Eur. Phys. J. D 28 267
|
[35] |
Lü H, Zhu S B, Qian J and Wang Y Z 2015 Chin. Phys. B 24 090308
|
[36] |
Liu W M and Li J 2018 Acta Phys. Sin. 67 110302 (in Chinese)
|
[37] |
Zhang H F, Chen F, Yu C C, Sun L H and Xu D H 2017 Chin. Phys. B 26 080304
|
[38] |
Cook R J, Shankland D G and Wells A L 1985 Phys. Rev. A 31 564
|
[39] |
Kayanuma Y and Saito K 2008 Phys. Rev. A 77 010101
|
[40] |
Yuan L M, Xu Y G, Gao W, Dai F and Wu Q L 2018 Chin. Phys. B 27 044101
|
[41] |
Salerno M, Abdullaev F K, Gammal A and Tomio L 2016 Phys. Rev. A 94 043602
|
[42] |
Jiménez-García K, LeBlanc L J, Williams R A, Beeler M C, Qu C, Gong M, Zhang C and Spielman I B 2015 Phys. Rev. Lett. 114 125301
|
[43] |
Leibfried D, Blatt R, Monroe C and Wineland D 2003 Rev. Mod. Phys. 75 281
|
[44] |
Mizrahi J, Senko C, Neyenhuis B, Johnson K G, Campbell W C, Conover C W S and Monroe C 2013 Phys. Rev. Lett. 110 203001
|
[45] |
Hai K, Luo Y R, Chong G S, Chen H and Hai W H 2017 Quantum Inf. Comput. 17 456
|
[46] |
Monroe C, Meekhof D M, King B E and Wineland D J 1996 Science 272 1131
|
[47] |
Kong C, Chen H, Li C L and Hai W H 2018 Chaos 28 023115
|
[48] |
Nakamura Y, Pashkin Y A and Tsai J S 1999 Nature 398 786
|
[49] |
Romero-Isart O and García-Ripoll J J 2007 Phys. Rev. A 76 052304
|
[50] |
Luo Y R, Lu G B, Kong C and Hai W H 2016 Phys. Rev. A 93 043409
|
[51] |
Arlinghaus S and Holthaus M 2011 Phys. Rev. A 84 063617
|
[52] |
Paul T, Richter K and Schlagheck P 2005 Phys. Rev. Lett. 94 020404
|
[53] |
Salger T, Kling S, Hecking T, Geckeler C, Morales-Molina L and Weitz M 2009 Science 326 1241
|
[54] |
Cheng Y S, Tang G H and Adhikari S K 2014 Phys. Rev. A 89 063602
|
[55] |
Chen Y A, Nascimbéne S, Aidelsburger M, Atala M, Trotzky S and Bloch I 2011 Phys. Rev. Lett. 107 210405
|
[56] |
Ma R, Tai M E, Preiss P M, Bakr W S, Simon J and Greiner M 2011 Phys. Rev. Lett. 107 095301
|
[57] |
Blatt S, Nicholson T L, Bloom B J, Williams J R, Thomsen J W, Julienne P S and Ye J 2011 Phys. Rev. Lett. 107 073202
|
[58] |
Inouye S, Andrews M R, Stengeretal J, Miesner H J, Stamper-Kurn D M and Ketterle W 1998 Nature 392 151
|
[59] |
Strecker K E, Partridge G B, Truscott A G and Hulet R G 2002 Nature 417 150
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|