Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 056402    DOI: 10.1088/1674-1056/28/5/056402
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Surface stabilized cubic phase of CsPbI3 and CsPbBr3 at room temperature

Feng Yang(杨凤), Cong Wang(王聪), Yuhao Pan(潘宇浩), Xieyu Zhou(周谐宇), Xianghua Kong(孔祥华), Wei Ji(季威)
Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China
Abstract  

Inorganic halide perovskites CsPbX3 (X=I, Br) have attracted tremendous attention in solar cell applications. However, the bulk form of the cubic phase CsPbX3, which offers moderate direct bandgaps, is metastable at room temperature and tends to transform into a tetragonal or orthorhombic phase. Here, our density functional theory calculation results found that the surface energies of the cubic phase are smaller than those of the orthorhombic phase, although the bulk counterpart of the cubic phase is less stable than that of the orthorhombic phase. These results suggest a surface stabilization strategy to maintain the stability of the cubic phase at room temperature that an enlarged portion of surfaces shall change the relative stability of the two phases in nanostructured CsPbX3. This strategy, which may potentially solve the long-standing stability issue of cubic CsPbX3, was demonstrated to be feasible by our calculations in zero-, one-, and two-dimensional nanostructures. In particular, confined sizes from few to tens of nanometers could keep the cubic phase as the most thermally favored form at room temperature. Our predicted values in particular cases, such as the zero-dimensional form of CsPbI3, are highly consistent with experimental values, suggesting that our model is reasonable and our results are reliable. These predicted critical sizes give the upper and lower limits of the confined sizes, which may guide experimentalists to synthesize these nanostructures and promote likely practical applications such as solar cells and flexible displays using CsPbX3 nanostructures.

Keywords:  inorganic perovskite solar cell      thermal stability      surface energy      nanowire      quantum dot      nano-plate  
Received:  11 March 2019      Revised:  21 March 2019      Accepted manuscript online: 
PACS:  64.70.Nd (Structural transitions in nanoscale materials)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  84.60.Jt (Photoelectric conversion)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 91433103, 11622437, and 61674171), the Fundamental Research Funds for the Central Universities of China, the Research Funds of Renmin University of China (Grant Nos. 16XNLQ01 and 19XNH065), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000).

Corresponding Authors:  Wei Ji     E-mail:  wji@ruc.edu.cn

Cite this article: 

Feng Yang(杨凤), Cong Wang(王聪), Yuhao Pan(潘宇浩), Xieyu Zhou(周谐宇), Xianghua Kong(孔祥华), Wei Ji(季威) Surface stabilized cubic phase of CsPbI3 and CsPbBr3 at room temperature 2019 Chin. Phys. B 28 056402

[1] Rong Y, Hu Y, Mei A, Tan H, Saidaminov M I, Seok S I, McGehee M D, Sargent E H and Han H 2018 Science 361 eaat8235
[2] Liu F, Li Q and Li Z 2018 Asian J. Org. Chem. 7 2182
[3] Urieta M J, Garcia B I, Molina O A and Martin N 2018 Chem. Soc. Rev. 47 8541
[4] Correa B Juan P, Abate A, Saliba M, Tress W, Jesper Jacobsson T, Grätzel M and Hagfeldt A 2017 Energy Environ. Sci. 10 710
[5] Huang J, Tan S, Lund P D and Zhou H 2017 Energy Environ. Sci. 10 2284
[6] Li W, Wang Z, Deschler F, Gao S, Friend R H and Cheetham A K 2017 Nat. Rev. Mater. 2 16099
[7] Zhou Y and Padture N P 2017 ACS Energy Lett. 2 2166
[8] Wu L J, Zhao Y Q, Chen C W, Wang L Z, Liu B and Cai M Q 2016 Chin. Phys. B 25 107202
[9] Li S H Li H T, Jiang Y X, Tu L M, Li W B, Pan L, Yang S E and Chen Y S 2018 Acta Phys. Sin. 67 158801 (in Chinese)
[10] Zhang A Chen Y L, Yan J and Zhang C X 2018 Acta Phys. Sin. 67 106701 (in Chinese)
[11] Zhang Y Y, Chen S Y, Xu P, Xiang H, Gong X G, Walsh A and Wei S H 2018 Chin. Phys. Lett. 35 036104
[12] https://www.nrel.gov/pv/cell-efficiency.html
[13] Green M A, Ho-Baillie A and Snaith H J 2014 Nat. Photonics 8 506
[14] Jung H S and Park N G 2015 Small 11 10
[15] Ma Y, Wang S, Zheng L, Lu Z, Zhang D, Bian Z, Huang C and Xiao L 2014 Chin J. Chem. 32 957
[16] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[17] Stoumpos C C, Malliakas C D, Peters J A, Liu Z, Sebastian M, Im J, Chasapis T C, Wibowo A C, Chung D Y, Freeman A J, Wessels B W and Kanatzidis M G 2013 Cryst. Growth Des. 13 2722
[18] Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M and Snaith H J 2013 Nat. Commun. 4 2885
[19] Li B, Fei C, Zheng K, Qu X, Pullerits T, Cao G and Tian J 2016 J. Mater. Chem. A 4 17018
[20] Conings B, Drijkoningen J, Gauquelin N, Babayigit A, D'Haen J, D'Olieslaeger L, Ethirajan A, Verbeeck J, Manca J, Mosconi E, Angelis F D and Boyen H G 2015 Adv. Energy. Mater. 5 1500477
[21] Juarez-Perez E J, Hawash Z, Raga S R, Ono L K and Qi Y 2016 Energy Environ. Sci. 9 3406
[22] Nenon D P, Christians J A, Wheeler L M, Blackburn J L, Sanehira E M, Dou B, Olsen M L, Zhu K, Berry J J and Luther J M 2016 Energy Environ. Sci. 9 2072
[23] Berhe T A, Su W N, Chen C H, Pan C J, Cheng J H, Chen H M, Tsai M C, Chen L Y, Dubale A A and Hwang B J 2016 Energy Environ. Sci. 9 323
[24] Li X, Cao F, Yu D, Chen J, Sun Z, Shen Y, Zhu Y, Wang L, Wei Y, Wu Y and Zeng H 2017 Small 13 1603996
[25] Correa-Baena J P, Abate A, Saliba M, Tress W, Jacobsson T J, Grätzel M and Hagfeldt A 2017 Energy Environ. Sci. 10 710
[26] Yin W J, Yang J H, Kang J, Yan Y and Wei S H 2015 J. Mater. Chem. A 3 8926
[27] Shi Z, Guo J, Chen Y, Li Q, Pan Y, Zhang H, Xia Y and Huang W 2017 Adv. Mater. 29 1605005
[28] Yuan Y, Xu R, Xu H T, Hong F, Xu F and Wang L J 2015 Chin. Phys. B 24 116302
[29] McMeekin D P, Sadoughi G, Rehman W, Eperon G E, Saliba M, Horantner M T, Haghighirad A, Sakai N, Korte L, Rech B, Johnston M B, Herz L M and Snaith H J 2016 Science 351 151
[30] Saliba M, Matsui T, Seo J Y, Domanski K, Correa-Baena J P, NazeeruddinMK, Zakeeruddin S M, TressW, Abate A and Hagfeldt A 2016 Energy Environ. Sci. 9 1989
[31] Zheng J J Wang Y R, Yu K H, Xu X X, Sheng X X, Hu E T and W W 2018 Acta Phys. Sin. 67 118502 (in Chinese)
[32] Sutton R J, Eperon G E, Miranda L, Parrott E S, Kamino B A, Patel J B, Hörantner M T, Johnston M B, Haghighirad A A, Moore D T and Snaith H J 2016 Adv. Energy. Mater. 6 1502458
[33] Swarnkar A, Marshall A R, Sanehira E M, Chernomordik B D, Moore D T, Christians J A, Chakrabarti T and Luther J M 2016 Science 354 92
[34] Trots D M and Myagkota S V 2008 J. Phys. Chem. Solids 69 2520
[35] Choi H, Jeong J, Kim H B, Kim S, Walker B, Kim G H and Kim J Y 2014 Nano Energy 7 80
[36] Eperon G E, Patern'o G M, Sutton R J, Zampetti A, Haghighirad A A, Cacialli F and Snaith H J 2015 J. Mater. Chem. A 3 19688
[37] Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A and Kovalenko M V 2015 Nano Lett. 15 3692
[38] Blöchl P E 1994 Phys. Rev. B 50 17953
[39] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[40] Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15
[41] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[42] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[43] Grimme S, Ehrlich S and Goerigk L 2011 J. Comp. Chem. 32 1456
[44] Jiang L Q, Guo J K, Liu H B, Zhu M, Zhou X, Wu P and Li C H 2006 J. Phys. Chem. Solids 67 1531
[45] Rodová M, Brožek J, Knížek K. and Nitsch K 2003 J. Therm. Anal. Calorim. 71 667
[46] Wang Y, Sun X, Shivanna R, Yang Y, Chen Z, Guo Y, Wang G C, Wertz E, Deschler F and Cai Z 2016 Nano. Lett. 16 7974
[47] Zhang D, Eaton S W, Yu Y, Dou L and Yang P 2015 J. Am. Chem. Soc. 137 9230
[48] Liao J F, Li W G, Rao H S, Chen B X, Wang X D, Chen H Y and Kuang D B 2017 Sci. China Mater. 60 285
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[3] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[4] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[5] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[6] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[7] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[8] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[9] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[10] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[11] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[12] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[13] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[14] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[15] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
No Suggested Reading articles found!