CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Surface stabilized cubic phase of CsPbI3 and CsPbBr3 at room temperature |
Feng Yang(杨凤), Cong Wang(王聪), Yuhao Pan(潘宇浩), Xieyu Zhou(周谐宇), Xianghua Kong(孔祥华), Wei Ji(季威) |
Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China |
|
|
Abstract Inorganic halide perovskites CsPbX3 (X=I, Br) have attracted tremendous attention in solar cell applications. However, the bulk form of the cubic phase CsPbX3, which offers moderate direct bandgaps, is metastable at room temperature and tends to transform into a tetragonal or orthorhombic phase. Here, our density functional theory calculation results found that the surface energies of the cubic phase are smaller than those of the orthorhombic phase, although the bulk counterpart of the cubic phase is less stable than that of the orthorhombic phase. These results suggest a surface stabilization strategy to maintain the stability of the cubic phase at room temperature that an enlarged portion of surfaces shall change the relative stability of the two phases in nanostructured CsPbX3. This strategy, which may potentially solve the long-standing stability issue of cubic CsPbX3, was demonstrated to be feasible by our calculations in zero-, one-, and two-dimensional nanostructures. In particular, confined sizes from few to tens of nanometers could keep the cubic phase as the most thermally favored form at room temperature. Our predicted values in particular cases, such as the zero-dimensional form of CsPbI3, are highly consistent with experimental values, suggesting that our model is reasonable and our results are reliable. These predicted critical sizes give the upper and lower limits of the confined sizes, which may guide experimentalists to synthesize these nanostructures and promote likely practical applications such as solar cells and flexible displays using CsPbX3 nanostructures.
|
Received: 11 March 2019
Revised: 21 March 2019
Accepted manuscript online:
|
PACS:
|
64.70.Nd
|
(Structural transitions in nanoscale materials)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
84.60.Jt
|
(Photoelectric conversion)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91433103, 11622437, and 61674171), the Fundamental Research Funds for the Central Universities of China, the Research Funds of Renmin University of China (Grant Nos. 16XNLQ01 and 19XNH065), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000). |
Corresponding Authors:
Wei Ji
E-mail: wji@ruc.edu.cn
|
Cite this article:
Feng Yang(杨凤), Cong Wang(王聪), Yuhao Pan(潘宇浩), Xieyu Zhou(周谐宇), Xianghua Kong(孔祥华), Wei Ji(季威) Surface stabilized cubic phase of CsPbI3 and CsPbBr3 at room temperature 2019 Chin. Phys. B 28 056402
|
[1] |
Rong Y, Hu Y, Mei A, Tan H, Saidaminov M I, Seok S I, McGehee M D, Sargent E H and Han H 2018 Science 361 eaat8235
|
[2] |
Liu F, Li Q and Li Z 2018 Asian J. Org. Chem. 7 2182
|
[3] |
Urieta M J, Garcia B I, Molina O A and Martin N 2018 Chem. Soc. Rev. 47 8541
|
[4] |
Correa B Juan P, Abate A, Saliba M, Tress W, Jesper Jacobsson T, Grätzel M and Hagfeldt A 2017 Energy Environ. Sci. 10 710
|
[5] |
Huang J, Tan S, Lund P D and Zhou H 2017 Energy Environ. Sci. 10 2284
|
[6] |
Li W, Wang Z, Deschler F, Gao S, Friend R H and Cheetham A K 2017 Nat. Rev. Mater. 2 16099
|
[7] |
Zhou Y and Padture N P 2017 ACS Energy Lett. 2 2166
|
[8] |
Wu L J, Zhao Y Q, Chen C W, Wang L Z, Liu B and Cai M Q 2016 Chin. Phys. B 25 107202
|
[9] |
Li S H Li H T, Jiang Y X, Tu L M, Li W B, Pan L, Yang S E and Chen Y S 2018 Acta Phys. Sin. 67 158801 (in Chinese)
|
[10] |
Zhang A Chen Y L, Yan J and Zhang C X 2018 Acta Phys. Sin. 67 106701 (in Chinese)
|
[11] |
Zhang Y Y, Chen S Y, Xu P, Xiang H, Gong X G, Walsh A and Wei S H 2018 Chin. Phys. Lett. 35 036104
|
[12] |
https://www.nrel.gov/pv/cell-efficiency.html
|
[13] |
Green M A, Ho-Baillie A and Snaith H J 2014 Nat. Photonics 8 506
|
[14] |
Jung H S and Park N G 2015 Small 11 10
|
[15] |
Ma Y, Wang S, Zheng L, Lu Z, Zhang D, Bian Z, Huang C and Xiao L 2014 Chin J. Chem. 32 957
|
[16] |
Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
|
[17] |
Stoumpos C C, Malliakas C D, Peters J A, Liu Z, Sebastian M, Im J, Chasapis T C, Wibowo A C, Chung D Y, Freeman A J, Wessels B W and Kanatzidis M G 2013 Cryst. Growth Des. 13 2722
|
[18] |
Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M and Snaith H J 2013 Nat. Commun. 4 2885
|
[19] |
Li B, Fei C, Zheng K, Qu X, Pullerits T, Cao G and Tian J 2016 J. Mater. Chem. A 4 17018
|
[20] |
Conings B, Drijkoningen J, Gauquelin N, Babayigit A, D'Haen J, D'Olieslaeger L, Ethirajan A, Verbeeck J, Manca J, Mosconi E, Angelis F D and Boyen H G 2015 Adv. Energy. Mater. 5 1500477
|
[21] |
Juarez-Perez E J, Hawash Z, Raga S R, Ono L K and Qi Y 2016 Energy Environ. Sci. 9 3406
|
[22] |
Nenon D P, Christians J A, Wheeler L M, Blackburn J L, Sanehira E M, Dou B, Olsen M L, Zhu K, Berry J J and Luther J M 2016 Energy Environ. Sci. 9 2072
|
[23] |
Berhe T A, Su W N, Chen C H, Pan C J, Cheng J H, Chen H M, Tsai M C, Chen L Y, Dubale A A and Hwang B J 2016 Energy Environ. Sci. 9 323
|
[24] |
Li X, Cao F, Yu D, Chen J, Sun Z, Shen Y, Zhu Y, Wang L, Wei Y, Wu Y and Zeng H 2017 Small 13 1603996
|
[25] |
Correa-Baena J P, Abate A, Saliba M, Tress W, Jacobsson T J, Grätzel M and Hagfeldt A 2017 Energy Environ. Sci. 10 710
|
[26] |
Yin W J, Yang J H, Kang J, Yan Y and Wei S H 2015 J. Mater. Chem. A 3 8926
|
[27] |
Shi Z, Guo J, Chen Y, Li Q, Pan Y, Zhang H, Xia Y and Huang W 2017 Adv. Mater. 29 1605005
|
[28] |
Yuan Y, Xu R, Xu H T, Hong F, Xu F and Wang L J 2015 Chin. Phys. B 24 116302
|
[29] |
McMeekin D P, Sadoughi G, Rehman W, Eperon G E, Saliba M, Horantner M T, Haghighirad A, Sakai N, Korte L, Rech B, Johnston M B, Herz L M and Snaith H J 2016 Science 351 151
|
[30] |
Saliba M, Matsui T, Seo J Y, Domanski K, Correa-Baena J P, NazeeruddinMK, Zakeeruddin S M, TressW, Abate A and Hagfeldt A 2016 Energy Environ. Sci. 9 1989
|
[31] |
Zheng J J Wang Y R, Yu K H, Xu X X, Sheng X X, Hu E T and W W 2018 Acta Phys. Sin. 67 118502 (in Chinese)
|
[32] |
Sutton R J, Eperon G E, Miranda L, Parrott E S, Kamino B A, Patel J B, Hörantner M T, Johnston M B, Haghighirad A A, Moore D T and Snaith H J 2016 Adv. Energy. Mater. 6 1502458
|
[33] |
Swarnkar A, Marshall A R, Sanehira E M, Chernomordik B D, Moore D T, Christians J A, Chakrabarti T and Luther J M 2016 Science 354 92
|
[34] |
Trots D M and Myagkota S V 2008 J. Phys. Chem. Solids 69 2520
|
[35] |
Choi H, Jeong J, Kim H B, Kim S, Walker B, Kim G H and Kim J Y 2014 Nano Energy 7 80
|
[36] |
Eperon G E, Patern'o G M, Sutton R J, Zampetti A, Haghighirad A A, Cacialli F and Snaith H J 2015 J. Mater. Chem. A 3 19688
|
[37] |
Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A and Kovalenko M V 2015 Nano Lett. 15 3692
|
[38] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[39] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[40] |
Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15
|
[41] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[42] |
Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
|
[43] |
Grimme S, Ehrlich S and Goerigk L 2011 J. Comp. Chem. 32 1456
|
[44] |
Jiang L Q, Guo J K, Liu H B, Zhu M, Zhou X, Wu P and Li C H 2006 J. Phys. Chem. Solids 67 1531
|
[45] |
Rodová M, Brožek J, Knížek K. and Nitsch K 2003 J. Therm. Anal. Calorim. 71 667
|
[46] |
Wang Y, Sun X, Shivanna R, Yang Y, Chen Z, Guo Y, Wang G C, Wertz E, Deschler F and Cai Z 2016 Nano. Lett. 16 7974
|
[47] |
Zhang D, Eaton S W, Yu Y, Dou L and Yang P 2015 J. Am. Chem. Soc. 137 9230
|
[48] |
Liao J F, Li W G, Rao H S, Chen B X, Wang X D, Chen H Y and Kuang D B 2017 Sci. China Mater. 60 285
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|