Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 047804    DOI: 10.1088/1674-1056/28/4/047804
Special Issue: SPECIAL TOPIC — Photodetector: Materials, physics, and applications
SPECIAL TOPIC—Photodetector: Materials, physics, and applications Prev   Next  

Fullerene-based electrode interlayers for bandgap tunable organometal perovskite metal-semiconductor-metal photodetectors

Wen Luo(罗文), Li-Zhi Yan(闫立志), Rong Liu(刘荣), Tao-Yu Zou(邹涛隅), Hang Zhou(周航)
School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
Abstract  

Perovskite photoconductor-type photodetector with metal-semiconductor-metal (MSM) structure is a basic device for photodetection applications. However, the role of electrode interlayer in MSM-type perovskite devices is less investigated compared to that of the pin diode structure. Here, a systematic investigation on the influence of phenyl-C61-butyric acid methyl ester (PCBM) and indene-C60 bisadduct (ICBA) interfacial layers for MSM perovskite photodetectors is reported. It is found that the fullerene-based interlayer significantly enhances the photocurrent of the MSM photodetectors. On one hand, the PCBM interlayer is more suitable for CH3NH3PbI3 photodetector, with the responsivity two times higher than that of the device with ICBA interlayer. The ICBA layer, on the other hand, becomes more effective when the band gap of perovskite is enlarged with bromine composition, denoted as CH3NH3Pb(I1-xBrx)3 (0 ≤ x ≤ 1). It is further found that the specific detectivity of photodetectors with ICBA interlayer becomes even higher than those with PCBM when the bromine compositional percentage reaches 0.6 (x > 0.6).

Keywords:  interlayer      perovskite      photodetectors  
Received:  10 January 2019      Revised:  27 February 2019      Accepted manuscript online: 
PACS:  78.56.-a (Photoconduction and photovoltaic effects)  
  78.66.Db (Elemental semiconductors and insulators)  
  78.66.Sq (Composite materials)  
  78.66.Tr (Fullerenes and related materials)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0202002), the Natural Science Foundation of Guangdong Province, China (Grant No. 2018A030313332), and the Fund from Shenzhen Science and Technology Innovation Commission, China (Grant No. JCYJ20160229122349365, High Sensitivity Perovskite Image Sensor Program).

Corresponding Authors:  Hang Zhou     E-mail:  ruifeng.zhouh81@pkusz.edu.cn

Cite this article: 

Wen Luo(罗文), Li-Zhi Yan(闫立志), Rong Liu(刘荣), Tao-Yu Zou(邹涛隅), Hang Zhou(周航) Fullerene-based electrode interlayers for bandgap tunable organometal perovskite metal-semiconductor-metal photodetectors 2019 Chin. Phys. B 28 047804

[1] Jeon N J, Na H, Jung E H, Yang T Y, Lee Y G, Kim G, Shin H W, Il Seok S, Lee J and Seo J 2018 Nat. Energy 3 628
[2] Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H and Seok S I 2017 Science 356 1376
[3] Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M and Gratzel M 2017 Science 358 768
[4] Zhou J and Huang J 2018 Adv. Sci. 5 1700256
[5] Luan S Z, Wang Y C, Liu Y T and Jia R X 2018 Chin. Phys. B 27 47208
[6] Wei Y, Cheng Z and Lin J 2018 Chem. Soc. Rev. 48 310
[7] Zhu H, Fu Y, Meng F, Wu X, Gong Z, Ding Q, Gustafsson M V, Trinh M T, Jin S and Zhu X Y 2015 Nat. Mater. 14 636
[8] Jr P C, Savenije T J, Abdellah M, Zheng K, Yartsev A, Pascher T, Harlang T, Chabera P, Pullerits T and Stepanov A 2014 J. Am. Chem. Soc. 136 5189
[9] Jin H H, Sang H I, Noh J H, Mandal T N, Lim C S, Chang J A, Yong H L, Kim H J, Sarkar A and Nazeeruddin M K 2009 Nat. Photon. 7 486
[10] Burschka J, Pellet N, Moon S J, Humphrybaker R, Gao P, Nazeeruddin M K and Gräzel M 2013 Nature 499 316
[11] Dou L, Yang Y, You J, Hong Z, Chang W H, Gang L and Yang Y 2014 Nat. Commun. 5 5404
[12] Dong R, Fang Y, Chae J, Dai J, Xiao Z, Dong Q, Yuan Y, Centrone A, Zeng X C and Huang J 2015 Adv. Mater. 27 1912
[13] Gill H S, Elshahat B, Sajo E, Kumar J, Kokil A, Zygmanski P, Li L and Mosurkal R 2014 APS March Meeting
[14] Liu M, Johnston M B and Snaith H J 2013 Nature 501 395
[15] Docampo P, Ball J M, Darwich M, Eperon G E and Snaith H J 2013 Nat. Commun. 4 2761
[16] Yuan H, Debroye E, Janssen K, Naiki H, Steuwe C, Lu G, Moris M, Orgiu E, Ujii H and Schryver F D 2016 J. Phys. Chem. Lett. 7 561
[17] Sanehira E M, Schulz P, Reese M O, Ferrere S, Zhu K, Lin L Y, Berry J J and Luther J M 2016 ACS Energy Lett. 1 38
[18] Chen S, Teng C, Zhang M, Li Y, Xie D and Shi G 2016 Adv. Mater. 28 5969
[19] Wang Y, Yang D, Zhou X, Alshehri S M, Ahamad T, Vadim A and Ma D 2017 Org. Electron. 42 203
[20] Nie W, Tsai H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S and Alam M A 2015 Science 347 522
[21] Seo J, Park S, Kim Y C, Jeon N J, Noh J H, Yoon S C and Sang I S 2014 Energy Environ. Sci. 7 2642
[22] He Y, Chen H Y, Hou J and Li Y 2010 J. Am. Chem. Soc. 132 1377
[23] Yoshida H 2014 J. Phys. Chem. C 118 24377
[24] Wang B, Xiao X and Chen T 2014 Nanoscale 6 12287
[25] Yusoff A R and Nazeeruddin M K 2016 J. Phys. Chem. Lett. 7 851
[26] Salim T, Sun S, Abe Y, Krishna A, Grimsdale A C and Lam Y M 2015 J. Mater. Chem. A 3 8943
[27] Saraf R and Maheshwari V 2018 ACS Appl. Mater. Interfaces 10 21066
[28] Hu X, Zhang X, Liang L, Bao J, Li S, Yang W and Xie Y 2014 Adv. Funct. Mater. 24 7373
[29] Tian W, Zhou H and Li L 2017 Small 13 1702107
[30] Loryuenyong V, Khiaokaeo N, Koomsin W, Thongchu S and Buasri A 2018 Micro & Nano Lett. 13 486
[31] Yang M, Zhang T, Schulz P, Li Z, Li G, Kim D H, Guo N, Berry J J, Zhu K and Zhao Y 2016 Nat. Commun. 7 12305
[32] Zeng L H, Wu D, Lin S H, Xie C, Yuan H Y, Lu W, Lau S P, Chai Y, Luo L B, Li Z J and Tsang Y H 2019 Adv. Funct. Mater. 29 1806878
[33] Zeng L H, Lin S H, Li Z J, Zhang Z X, Zhang T F, Xie C, Mak C H, Chai Y, Lau S P, Luo L B and Tsang Y H 2018 Adv. Funct. Mater. 28 1705970
[34] Wang B, Xiao X and Chen T 2014 Nanoscale 6 12287
[35] He Y, Chen H Y, Hou J and Li Y 2010 J. Am. Chem. Soc. 132 1377
[36] Yoshida H 2014 J. Phys. Chem. C 118 24377
[37] Wang H, Wang Y, Bo H, Li W, Sulaman M, Xu J, Yang S, Yi T and Zou B 2016 ACS Appl. Mater. Interfaces 8 18526
[38] Juarezperez E J, Wußler M, Fabregatsantiago F, Lakuswollny K, Mankel E, Mayer T, Jaegermann W and Morasero I 2014 J. Phys. Chem. Lett. 5 680
[39] Wang P, Zhang J, Chen R, Zeng Z, Huang X, Wang L, Xu J, Hu Z and Zhu Y 2017 Electrochimica Acta 227 180
[40] Pockett A, Eperon G E, Peltola T, Snaith H J, Walker A, Peter L M and Cameron P J 2015 J. Phys. Chem. C 119 3456
[41] Christians J A, Fung R C and Kamat P V 2014 J. Am. Chem. Soc. 136 758
[1] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[2] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[3] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[4] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[5] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[6] Ru thickness-dependent interlayer coupling and ultrahigh FMR frequency in FeCoB/Ru/FeCoB sandwich trilayers
Le Wang(王乐), Zhao-Xuan Jing(荆照轩), Ao-Ran Zhou(周傲然), and Shan-Dong Li(李山东). Chin. Phys. B, 2022, 31(8): 086201.
[7] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[8] Introducing voids around the interlayer of AlN by high temperature annealing
Jianwei Ben(贲建伟), Jiangliu Luo(罗江流), Zhichen Lin(林之晨), Xiaojuan Sun(孙晓娟), Xinke Liu(刘新科), and Xiaohua Li(黎晓华). Chin. Phys. B, 2022, 31(7): 076104.
[9] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[10] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[11] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[12] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[13] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[14] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[15] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
No Suggested Reading articles found!