Special Issue:
SPECIAL TOPIC — Photodetector: Materials, physics, and applications
|
SPECIAL TOPIC—Photodetector: Materials, physics, and applications |
Prev
Next
|
|
|
Fullerene-based electrode interlayers for bandgap tunable organometal perovskite metal-semiconductor-metal photodetectors |
Wen Luo(罗文), Li-Zhi Yan(闫立志), Rong Liu(刘荣), Tao-Yu Zou(邹涛隅), Hang Zhou(周航) |
School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China |
|
|
Abstract Perovskite photoconductor-type photodetector with metal-semiconductor-metal (MSM) structure is a basic device for photodetection applications. However, the role of electrode interlayer in MSM-type perovskite devices is less investigated compared to that of the pin diode structure. Here, a systematic investigation on the influence of phenyl-C61-butyric acid methyl ester (PCBM) and indene-C60 bisadduct (ICBA) interfacial layers for MSM perovskite photodetectors is reported. It is found that the fullerene-based interlayer significantly enhances the photocurrent of the MSM photodetectors. On one hand, the PCBM interlayer is more suitable for CH3NH3PbI3 photodetector, with the responsivity two times higher than that of the device with ICBA interlayer. The ICBA layer, on the other hand, becomes more effective when the band gap of perovskite is enlarged with bromine composition, denoted as CH3NH3Pb(I1-xBrx)3 (0 ≤ x ≤ 1). It is further found that the specific detectivity of photodetectors with ICBA interlayer becomes even higher than those with PCBM when the bromine compositional percentage reaches 0.6 (x > 0.6).
|
Received: 10 January 2019
Revised: 27 February 2019
Accepted manuscript online:
|
PACS:
|
78.56.-a
|
(Photoconduction and photovoltaic effects)
|
|
78.66.Db
|
(Elemental semiconductors and insulators)
|
|
78.66.Sq
|
(Composite materials)
|
|
78.66.Tr
|
(Fullerenes and related materials)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0202002), the Natural Science Foundation of Guangdong Province, China (Grant No. 2018A030313332), and the Fund from Shenzhen Science and Technology Innovation Commission, China (Grant No. JCYJ20160229122349365, High Sensitivity Perovskite Image Sensor Program). |
Corresponding Authors:
Hang Zhou
E-mail: ruifeng.zhouh81@pkusz.edu.cn
|
Cite this article:
Wen Luo(罗文), Li-Zhi Yan(闫立志), Rong Liu(刘荣), Tao-Yu Zou(邹涛隅), Hang Zhou(周航) Fullerene-based electrode interlayers for bandgap tunable organometal perovskite metal-semiconductor-metal photodetectors 2019 Chin. Phys. B 28 047804
|
[1] |
Jeon N J, Na H, Jung E H, Yang T Y, Lee Y G, Kim G, Shin H W, Il Seok S, Lee J and Seo J 2018 Nat. Energy 3 628
|
[2] |
Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H and Seok S I 2017 Science 356 1376
|
[3] |
Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M and Gratzel M 2017 Science 358 768
|
[4] |
Zhou J and Huang J 2018 Adv. Sci. 5 1700256
|
[5] |
Luan S Z, Wang Y C, Liu Y T and Jia R X 2018 Chin. Phys. B 27 47208
|
[6] |
Wei Y, Cheng Z and Lin J 2018 Chem. Soc. Rev. 48 310
|
[7] |
Zhu H, Fu Y, Meng F, Wu X, Gong Z, Ding Q, Gustafsson M V, Trinh M T, Jin S and Zhu X Y 2015 Nat. Mater. 14 636
|
[8] |
Jr P C, Savenije T J, Abdellah M, Zheng K, Yartsev A, Pascher T, Harlang T, Chabera P, Pullerits T and Stepanov A 2014 J. Am. Chem. Soc. 136 5189
|
[9] |
Jin H H, Sang H I, Noh J H, Mandal T N, Lim C S, Chang J A, Yong H L, Kim H J, Sarkar A and Nazeeruddin M K 2009 Nat. Photon. 7 486
|
[10] |
Burschka J, Pellet N, Moon S J, Humphrybaker R, Gao P, Nazeeruddin M K and Gräzel M 2013 Nature 499 316
|
[11] |
Dou L, Yang Y, You J, Hong Z, Chang W H, Gang L and Yang Y 2014 Nat. Commun. 5 5404
|
[12] |
Dong R, Fang Y, Chae J, Dai J, Xiao Z, Dong Q, Yuan Y, Centrone A, Zeng X C and Huang J 2015 Adv. Mater. 27 1912
|
[13] |
Gill H S, Elshahat B, Sajo E, Kumar J, Kokil A, Zygmanski P, Li L and Mosurkal R 2014 APS March Meeting
|
[14] |
Liu M, Johnston M B and Snaith H J 2013 Nature 501 395
|
[15] |
Docampo P, Ball J M, Darwich M, Eperon G E and Snaith H J 2013 Nat. Commun. 4 2761
|
[16] |
Yuan H, Debroye E, Janssen K, Naiki H, Steuwe C, Lu G, Moris M, Orgiu E, Ujii H and Schryver F D 2016 J. Phys. Chem. Lett. 7 561
|
[17] |
Sanehira E M, Schulz P, Reese M O, Ferrere S, Zhu K, Lin L Y, Berry J J and Luther J M 2016 ACS Energy Lett. 1 38
|
[18] |
Chen S, Teng C, Zhang M, Li Y, Xie D and Shi G 2016 Adv. Mater. 28 5969
|
[19] |
Wang Y, Yang D, Zhou X, Alshehri S M, Ahamad T, Vadim A and Ma D 2017 Org. Electron. 42 203
|
[20] |
Nie W, Tsai H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S and Alam M A 2015 Science 347 522
|
[21] |
Seo J, Park S, Kim Y C, Jeon N J, Noh J H, Yoon S C and Sang I S 2014 Energy Environ. Sci. 7 2642
|
[22] |
He Y, Chen H Y, Hou J and Li Y 2010 J. Am. Chem. Soc. 132 1377
|
[23] |
Yoshida H 2014 J. Phys. Chem. C 118 24377
|
[24] |
Wang B, Xiao X and Chen T 2014 Nanoscale 6 12287
|
[25] |
Yusoff A R and Nazeeruddin M K 2016 J. Phys. Chem. Lett. 7 851
|
[26] |
Salim T, Sun S, Abe Y, Krishna A, Grimsdale A C and Lam Y M 2015 J. Mater. Chem. A 3 8943
|
[27] |
Saraf R and Maheshwari V 2018 ACS Appl. Mater. Interfaces 10 21066
|
[28] |
Hu X, Zhang X, Liang L, Bao J, Li S, Yang W and Xie Y 2014 Adv. Funct. Mater. 24 7373
|
[29] |
Tian W, Zhou H and Li L 2017 Small 13 1702107
|
[30] |
Loryuenyong V, Khiaokaeo N, Koomsin W, Thongchu S and Buasri A 2018 Micro & Nano Lett. 13 486
|
[31] |
Yang M, Zhang T, Schulz P, Li Z, Li G, Kim D H, Guo N, Berry J J, Zhu K and Zhao Y 2016 Nat. Commun. 7 12305
|
[32] |
Zeng L H, Wu D, Lin S H, Xie C, Yuan H Y, Lu W, Lau S P, Chai Y, Luo L B, Li Z J and Tsang Y H 2019 Adv. Funct. Mater. 29 1806878
|
[33] |
Zeng L H, Lin S H, Li Z J, Zhang Z X, Zhang T F, Xie C, Mak C H, Chai Y, Lau S P, Luo L B and Tsang Y H 2018 Adv. Funct. Mater. 28 1705970
|
[34] |
Wang B, Xiao X and Chen T 2014 Nanoscale 6 12287
|
[35] |
He Y, Chen H Y, Hou J and Li Y 2010 J. Am. Chem. Soc. 132 1377
|
[36] |
Yoshida H 2014 J. Phys. Chem. C 118 24377
|
[37] |
Wang H, Wang Y, Bo H, Li W, Sulaman M, Xu J, Yang S, Yi T and Zou B 2016 ACS Appl. Mater. Interfaces 8 18526
|
[38] |
Juarezperez E J, Wußler M, Fabregatsantiago F, Lakuswollny K, Mankel E, Mayer T, Jaegermann W and Morasero I 2014 J. Phys. Chem. Lett. 5 680
|
[39] |
Wang P, Zhang J, Chen R, Zeng Z, Huang X, Wang L, Xu J, Hu Z and Zhu Y 2017 Electrochimica Acta 227 180
|
[40] |
Pockett A, Eperon G E, Peltola T, Snaith H J, Walker A, Peter L M and Cameron P J 2015 J. Phys. Chem. C 119 3456
|
[41] |
Christians J A, Fung R C and Kamat P V 2014 J. Am. Chem. Soc. 136 758
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|