CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Band engineering of B2H2 nanoribbons |
Bao Lei(雷宝)1,2, Yu-Yang Zhang(张余洋)1,2,3, Shi-Xuan Du(杜世萱)1,2,3 |
1 Institute of Physics, Chinese Academy of Sciences(CAS), Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100190, China;
3 CAS Center for Excellence in Topological Quantum Computation, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Freestanding honeycomb borophene is unstable due to the electron-deficiency of boron atoms. B2H2 monolayer, a typical borophene hydride, has been predicted to be structurally stable and attracts great attention. Here, we investigate the electronic structures of B2H2 nanoribbons. Based on first-principles calculations, we have found that all narrow armchair nanoribbons with and without mirror symmetry (ANR-s and ANR-as, respectively) are semiconducting. The energy gap has a relation with the width of the ribbon. When the ribbon is getting wider, the gap disappears. The zigzag ribbons without mirror symmetry (ZNR-as) have the same trend. But the zigzag ribbons with mirror symmetry (ZNR-s) are always metallic. We have also found that the metallic ANR-as and ZNR-s can be switched to semiconducting by applying a tensile strain along the nanoribbon. A gap of 1.10 eV is opened under 16% strain for the 11.0-Å ANR-as. Structural stability under such a large strain has also been confirmed. The flexible band tunability of B2H2 nanoribbon increases its possibility of potential applications in nanodevices.
|
Received: 17 January 2019
Revised: 18 February 2019
Accepted manuscript online:
|
PACS:
|
68.35.Gy
|
(Mechanical properties; surface strains)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.20.Ps
|
(Other inorganic compounds)
|
|
68.60.Wm
|
(Other nonelectronic physical properties)
|
|
Corresponding Authors:
Shi-Xuan Du
E-mail: sxdu@iphy.ac.cn
|
Cite this article:
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱) Band engineering of B2H2 nanoribbons 2019 Chin. Phys. B 28 046803
|
[1] |
Mannix A J, Zhang Z, Guisinger N P, Yakobson B I and Hersam M C 2018 Nat. Nanotechnol. 13 444
|
[2] |
Feng B, Sugino O, Liu R Y, Zhang J, Yukawa R, Kawamura M, Iimori T, Kim H, Hasegawa Y, Li H, Chen L, Wu K, Kumigashira H, Komori F, Chiang T C, Meng S and Matsuda I 2017 Phys. Rev. Lett. 118 096401
|
[3] |
Zhang L Z, Yan Q B, Du S X, Su G and Gao H J 2012 J. Phys. Chem. C 116 18202
|
[4] |
Zhang H, Li Y, Hou J, Du A and Chen Z 2016 Nano Lett. 16 6124
|
[5] |
Liu X, Wei Z, Balla I, Mannix A J, Guisinger N P, Luijten E and Hersam M C 2017 Sci. Adv. 3 e1602356
|
[6] |
Guo W, Hu Y B, Zhang Y Y, Du S X and Gao H J 2009 Chin. Phys. B 18 2502
|
[7] |
Penev E S, Bhowmick S, Sadrzadeh A and Yakobson B I 2012 Nano Lett. 12 2441
|
[8] |
Wu X, Dai J, Zhao Y, Zhuo Z, Yang J and Zeng X C 2012 ACS Nano 6 7443
|
[9] |
Liu Y, Penev E S and Yakobson B I 2013 Angew. Chem. Int. Ed. 52 3156
|
[10] |
Li D, Chen Y, He J, Tang Q, Zhong C and Ding G 2018 Chin. Phys. B 27 036303
|
[11] |
Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C and Guisinger N P 2015 Science 350 1513
|
[12] |
Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L and Wu K 2016 Nat. Chem. 8 563
|
[13] |
Li W, Kong L, Chen C, Gou J, Sheng S, Zhang W, Li H, Chen L, Cheng P and Wu K 2018 Chin. Sci. Bull. 63 282
|
[14] |
Xu L C, Du A and Kou L 2016 Phys. Chem. Chem. Phys. 18 27284
|
[15] |
Abtew T A, Shih B-c, Dev P, Crespi V H and Zhang P 2011 Phys. Lett. B 83 094108
|
[16] |
Abtew T A and Zhang P 2011 Phys. Lett. B 84 094303
|
[17] |
Nishino H, Fujita T, Cuong N T, Tominaka S, Miyauchi M, Iimura S, Hirata A, Umezawa N, Okada S, Nishibori E, Fujino A, Fujimori T, Ito S I, Nakamura J, Hosono H and Kondo T 2017 J. Am. Chem. Soc. 139 13761
|
[18] |
Jiao Y L, Ma F X, Bell J, Bilic A and Du A J 2016 Angew. Chem. Int. Ed. 55 10292
|
[19] |
Mortazavi B, Makaremi M, Shahrokhi M, Raeisi M, Singh C V, Rabczuk T and Pereira L F C 2018 Nanoscale 10 3759
|
[20] |
Zhang Y F, Zhang Y, Li G, Lu J, Que Y, Chen H, Berger R, Feng X, Müllen K, Lin X, Zhang Y Y, Du S, Pantelides S T and Gao H J 2017 Nano Res. 10 3377
|
[21] |
Llinas J P, Fairbrother A, Borin Barin G, Shi W, Lee K, Wu S, Yong Choi B, Braganza R, Lear J, Kau N, Choi W, Chen C, Pedramrazi Z, Dumslaff T, Narita A, Feng X, Mullen K, Fischer F, Zettl A, Ruffieux P, Yablonovitch E, Crommie M, Fasel R and Bokor J 2017 Nat. Commun. 8 633
|
[22] |
Pan J, Du S, Zhang Y, Pan L, Zhang Y, Gao H J and Pantelides S T 2015 Phys. Lett. B 92 205429
|
[23] |
Pan L D, Zhang L Z, Song B Q, Du S X and Gao H J 2011 Appl. Phy. Lett. 98 173102
|
[24] |
Kresse G and Furthmuller J 1996 Phys. Lett. B 54 11169
|
[25] |
Blöchl P E 1994 Phys. Lett. B 50 17953
|
[26] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[27] |
Baroni S, Gironcoli S d and Corso A D 2001 Rev. Mod. Phys. 73 515
|
[28] |
Huang L F, Zhang G R, Zheng X H, Gong P L, Cao T F and Zeng Z 2013 J. Phys.: Condens. Matter. 25 055304
|
[29] |
Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385
|
[30] |
Zhang Y Y, Mishra R, Pennycook T J, Borisevich A Y, Pennycook S J and Pantelides S T 2015 Adv. Mater. Interfaces 2 1500344
|
[31] |
Yin K, Zhang Y Y, Zhou Y, Sun L, Chisholm M F, Pantelides S T and Zhou W 2016 2D Mater. 4 011001
|
[32] |
Zhou S Y, Gweon G H, Fedorov A V, First P N, de Heer W A, Lee D H, Guinea F, Castro Neto A H and Lanzara A 2007 Nat. Mater. 6 770
|
[33] |
Ribeiro R M, Peres N M R, Coutinho J and Briddon P R 2008 Phys. Lett. B 78 075442
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|