Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 046803    DOI: 10.1088/1674-1056/28/4/046803
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Band engineering of B2H2 nanoribbons

Bao Lei(雷宝)1,2, Yu-Yang Zhang(张余洋)1,2,3, Shi-Xuan Du(杜世萱)1,2,3
1 Institute of Physics, Chinese Academy of Sciences(CAS), Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100190, China;
3 CAS Center for Excellence in Topological Quantum Computation, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

Freestanding honeycomb borophene is unstable due to the electron-deficiency of boron atoms. B2H2 monolayer, a typical borophene hydride, has been predicted to be structurally stable and attracts great attention. Here, we investigate the electronic structures of B2H2 nanoribbons. Based on first-principles calculations, we have found that all narrow armchair nanoribbons with and without mirror symmetry (ANR-s and ANR-as, respectively) are semiconducting. The energy gap has a relation with the width of the ribbon. When the ribbon is getting wider, the gap disappears. The zigzag ribbons without mirror symmetry (ZNR-as) have the same trend. But the zigzag ribbons with mirror symmetry (ZNR-s) are always metallic. We have also found that the metallic ANR-as and ZNR-s can be switched to semiconducting by applying a tensile strain along the nanoribbon. A gap of 1.10 eV is opened under 16% strain for the 11.0-Å ANR-as. Structural stability under such a large strain has also been confirmed. The flexible band tunability of B2H2 nanoribbon increases its possibility of potential applications in nanodevices.

Keywords:  borophene hydride nanoribbons      band engineering      first-principles calculations      strain  
Received:  17 January 2019      Revised:  18 February 2019      Accepted manuscript online: 
PACS:  68.35.Gy (Mechanical properties; surface strains)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.Ps (Other inorganic compounds)  
  68.60.Wm (Other nonelectronic physical properties)  
Corresponding Authors:  Shi-Xuan Du     E-mail:  sxdu@iphy.ac.cn

Cite this article: 

Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱) Band engineering of B2H2 nanoribbons 2019 Chin. Phys. B 28 046803

[1] Mannix A J, Zhang Z, Guisinger N P, Yakobson B I and Hersam M C 2018 Nat. Nanotechnol. 13 444
[2] Feng B, Sugino O, Liu R Y, Zhang J, Yukawa R, Kawamura M, Iimori T, Kim H, Hasegawa Y, Li H, Chen L, Wu K, Kumigashira H, Komori F, Chiang T C, Meng S and Matsuda I 2017 Phys. Rev. Lett. 118 096401
[3] Zhang L Z, Yan Q B, Du S X, Su G and Gao H J 2012 J. Phys. Chem. C 116 18202
[4] Zhang H, Li Y, Hou J, Du A and Chen Z 2016 Nano Lett. 16 6124
[5] Liu X, Wei Z, Balla I, Mannix A J, Guisinger N P, Luijten E and Hersam M C 2017 Sci. Adv. 3 e1602356
[6] Guo W, Hu Y B, Zhang Y Y, Du S X and Gao H J 2009 Chin. Phys. B 18 2502
[7] Penev E S, Bhowmick S, Sadrzadeh A and Yakobson B I 2012 Nano Lett. 12 2441
[8] Wu X, Dai J, Zhao Y, Zhuo Z, Yang J and Zeng X C 2012 ACS Nano 6 7443
[9] Liu Y, Penev E S and Yakobson B I 2013 Angew. Chem. Int. Ed. 52 3156
[10] Li D, Chen Y, He J, Tang Q, Zhong C and Ding G 2018 Chin. Phys. B 27 036303
[11] Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C and Guisinger N P 2015 Science 350 1513
[12] Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L and Wu K 2016 Nat. Chem. 8 563
[13] Li W, Kong L, Chen C, Gou J, Sheng S, Zhang W, Li H, Chen L, Cheng P and Wu K 2018 Chin. Sci. Bull. 63 282
[14] Xu L C, Du A and Kou L 2016 Phys. Chem. Chem. Phys. 18 27284
[15] Abtew T A, Shih B-c, Dev P, Crespi V H and Zhang P 2011 Phys. Lett. B 83 094108
[16] Abtew T A and Zhang P 2011 Phys. Lett. B 84 094303
[17] Nishino H, Fujita T, Cuong N T, Tominaka S, Miyauchi M, Iimura S, Hirata A, Umezawa N, Okada S, Nishibori E, Fujino A, Fujimori T, Ito S I, Nakamura J, Hosono H and Kondo T 2017 J. Am. Chem. Soc. 139 13761
[18] Jiao Y L, Ma F X, Bell J, Bilic A and Du A J 2016 Angew. Chem. Int. Ed. 55 10292
[19] Mortazavi B, Makaremi M, Shahrokhi M, Raeisi M, Singh C V, Rabczuk T and Pereira L F C 2018 Nanoscale 10 3759
[20] Zhang Y F, Zhang Y, Li G, Lu J, Que Y, Chen H, Berger R, Feng X, Müllen K, Lin X, Zhang Y Y, Du S, Pantelides S T and Gao H J 2017 Nano Res. 10 3377
[21] Llinas J P, Fairbrother A, Borin Barin G, Shi W, Lee K, Wu S, Yong Choi B, Braganza R, Lear J, Kau N, Choi W, Chen C, Pedramrazi Z, Dumslaff T, Narita A, Feng X, Mullen K, Fischer F, Zettl A, Ruffieux P, Yablonovitch E, Crommie M, Fasel R and Bokor J 2017 Nat. Commun. 8 633
[22] Pan J, Du S, Zhang Y, Pan L, Zhang Y, Gao H J and Pantelides S T 2015 Phys. Lett. B 92 205429
[23] Pan L D, Zhang L Z, Song B Q, Du S X and Gao H J 2011 Appl. Phy. Lett. 98 173102
[24] Kresse G and Furthmuller J 1996 Phys. Lett. B 54 11169
[25] Blöchl P E 1994 Phys. Lett. B 50 17953
[26] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[27] Baroni S, Gironcoli S d and Corso A D 2001 Rev. Mod. Phys. 73 515
[28] Huang L F, Zhang G R, Zheng X H, Gong P L, Cao T F and Zeng Z 2013 J. Phys.: Condens. Matter. 25 055304
[29] Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385
[30] Zhang Y Y, Mishra R, Pennycook T J, Borisevich A Y, Pennycook S J and Pantelides S T 2015 Adv. Mater. Interfaces 2 1500344
[31] Yin K, Zhang Y Y, Zhou Y, Sun L, Chisholm M F, Pantelides S T and Zhou W 2016 2D Mater. 4 011001
[32] Zhou S Y, Gweon G H, Fedorov A V, First P N, de Heer W A, Lee D H, Guinea F, Castro Neto A H and Lanzara A 2007 Nat. Mater. 6 770
[33] Ribeiro R M, Peres N M R, Coutinho J and Briddon P R 2008 Phys. Lett. B 78 075442
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[3] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[9] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[10] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[11] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[12] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[13] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[14] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[15] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
No Suggested Reading articles found!