Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 030301    DOI: 10.1088/1674-1056/28/3/030301
GENERAL Prev   Next  

Dynamical control of population and entanglement for open Λ-type atoms by engineering the environment

Xiao-Lan Wang(王晓岚), Yu-Kun Ren(任玉坤), Hao-Sheng Zeng(曾浩生)
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081, China
Abstract  The exactly analytical solution for the dynamics of the dissipative Λ-type atom in the zero-temperature Lorentzian environment is presented. On this basis, we study the evolution of the population and entanglement. We find that the stable populations on the two lower levels of the Λ-type atom can be effectively adjusted by the combination of the relative decay rate and the environmental spectral frequency. However, for the initial Werner-like state, the stable entanglement between the two Λ-type atoms has very little tunability. Furthermore, the stable entanglement for the bilateral environment case is larger than that of the unilateral environmental case. A nonintuitive relation between the stable entanglement and stable population is found.
Keywords:  open quantum systems      population      entanglement  
Received:  06 September 2018      Revised:  10 December 2018      Accepted manuscript online: 
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11275064), the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20124306110003), and the Construct Program of the National Key Discipline, China.
Corresponding Authors:  Hao-Sheng Zeng     E-mail:  hszeng@hunnu.edu.cn

Cite this article: 

Xiao-Lan Wang(王晓岚), Yu-Kun Ren(任玉坤), Hao-Sheng Zeng(曾浩生) Dynamical control of population and entanglement for open Λ-type atoms by engineering the environment 2019 Chin. Phys. B 28 030301

[1] Lindblad G 1976 Commun. Math. Phys. 48 119
[2] Gorini V, Kossakowski A and Sudarshan E C G 1976 J. Math. Phys. 17 821
[3] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[4] Buluta I, Ashhab S and Nori F 2011 Rep. Prog. Phys. 74 104401
[5] You J Q and Nori F 2005 Phys. Today 58 42
[6] Shao J 2004 J. Chem. Phys. 120 5053
[7] Chin A W, Datta A, Caruso F, Huelga S F and Plenio M B 2010 New J. Phys. 12 065002
[8] Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401
[9] Rivas Á, Huelga S F and Plenio M B 2010 Phys. Rev. Lett. 105 050403
[10] Lu X M, Wang X G and Sun C P 2010 Phys. Rev. A 82 042103
[11] Luo S, Fu S and Song H 2012 Phys. Rev. A 86 044101
[12] Chruscinski D and Maniscalco S 2014 Phys. Rev. Lett. 112 120404
[13] Chruscinski D, Macchiavello C and Maniscalco S 2017 Phys. Rev. Lett. 118 080404
[14] Song H, Luo S and Hong Y 2015 Phys. Rev. A 91 042110
[15] Chen S L, Lambert N, Li C M, Miranowicz A, Chen Y N and Nori F 2016 Phys. Rev. Lett. 116 020503
[16] Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. A 91 032115
[17] Paula F M, Obando P C and Sarandy M S 2016 Phys. Rev. A 93 042337
[18] He Z, Zeng H S, Li Y, Wang Q and Yao C 2017 Phys. Rev. A 96 022106
[19] Haikka P, Johnson T H and Maniscalco S 2013 Phys. Rev. A 87 010103(R)
[20] Addis C, Brebner G, Haikka P and Maniscalco S 2014 Phys. Rev. A 89 024101
[21] Zeng H S, Zheng Y P, Tang N and Wang G Y 2013 Quantum Inf. Process 12 1637
[22] Wissmann S, Breuer H P and Vacchini B 2015 Phys. Rev. A. 92 042108
[23] Bae J and Chruscinski D 2016 Phys. Rev. Lett. 117 050403
[24] Bylicka B, Johansson M and Acin A 2017 Phys. Rev. Lett. 118 120501
[25] Liu Y, Cheng W, Gao Z Y and Zeng H S 2015 Opt. Express 23 023021
[26] Liu Y, Zou H M and Fang M F 2018 Chin. Phys. B 27 010304
[27] Gao D Y, Gao Q and Xia Y J 2017 Chin. Phys. B 26 110303
[28] Zou H M and Fang M F 2015 Chin. Phys. B 24 080304
[29] Ding B F, Wang X Y, Tang Y F, Mi X W and Zhao H P 2011 Chin. Phys. B 20 060304
[30] Chin A W, Huelga S F and Plenio M B 2012 Phys. Rev. Lett. 109 233601
[31] Vasile R, Olivares S, Paris M G A and Maniscalco S 2011 Phys. Rev. A 83 042321
[32] Laine E M, Breuer H P and Piilo J 2014 Sci. Rep. 4 4620
[33] Bylicka B, Chruściński D and Maniscalco S 2014 Sci. Rep. 4 5720
[34] Tang N, Fan Z L and Zeng H S 2015 Quantum Inf. Comput. 15 0568
[35] Xu K, Han W, Zhang Y J and Fan H 2018 Chin. Phys. B 27 010302
[36] He Z, Yao C M, Li L and Wang Q 2016 Chin. Phys. B 25 080304
[37] Ren Y K, Wang X L and Zeng H S 2018 Quantum Inf. Process 17 5
[38] Garraway B M 1997 Phys. Rev. A. 55 2290
[39] Fan Z L, Ren Y K and Zeng H S 2016 Chin. Phys. B 25 010303
[40] Gu W J and Li G X 2012 Phys. Rev. A 85 014101
[41] Hamilton C H, Kinsey J L and Field R W 1986 Annu. Rev. Phys. Chem. 37 493
[42] Meier W, Ahlers G and Zacharias H 1986 J. Chem. Phys. 85 2599
[43] Scala M, Militello B, Messina A and Vitanov N V 2011 Phys. Rev. A 83 012101
[44] Wang Q, Nie J J and Zeng H S 2013 Eur. Phys. J. D 67 151
[45] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[46] Bellomo B, Lo Franco R and Compagno G 2007 Phys. Rev. Lett. 99 160502
[47] Bellomo B, Lo Franco R and Compagno G 2008 Phys. Rev. A 77 032342
[48] Cao X and Zheng H 2008 Phys. Rev. A 77 022320
[49] Golkar S and Tavassoly 2018 Chin. Phys. B 27 040303
[50] Derkacz L and Jakobczyk 2006 Phys. Rev. A 74 032313
[51] Checinska A and Wodkiewicz K 2007 Phys. Rev. A. 76 052306
[52] Peres A 1996 Phys. Rev. Lett. 77 1413
[53] Horodečki P 1997 Phys. Lett. A 232 333
[54] Werner R F 1989 Phys. Rev. A 40 4277
[1] Measuring stellar populations, dust attenuation and ionized gas at kpc scales in 10010 nearby galaxies using the integral field spectroscopy from MaNGA
Niu Li(李牛) and Cheng Li(李成). Chin. Phys. B, 2023, 32(3): 039801.
[2] Fast population transfer with a superconducting qutrit via non-Hermitian shortcut to adiabaticity
Xin-Ping Dong(董新平), Zhi-Bo Feng(冯志波), Xiao-Jing Lu(路晓静), Ming Li(李明), and Zheng-Yin Zhao(赵正印). Chin. Phys. B, 2023, 32(3): 034201.
[3] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[4] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[5] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[6] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[7] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[8] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[9] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[10] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[11] Nonlinear dynamical wave structures of Zoomeron equation for population models
Ahmet Bekir and Emad H M Zahran. Chin. Phys. B, 2022, 31(6): 060401.
[12] Advantage of populous countries in the trends of innovation efficiency
Dan-Dan Hu(胡淡淡), Xue-Jin Fang(方学进), and Xiao-Pu Han(韩筱璞). Chin. Phys. B, 2022, 31(6): 068903.
[13] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[14] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[15] High-performance coherent population trapping clock based on laser-cooled atoms
Xiaochi Liu(刘小赤), Ning Ru(茹宁), Junyi Duan(段俊毅), Peter Yun(云恩学), Minghao Yao(姚明昊), and Jifeng Qu(屈继峰). Chin. Phys. B, 2022, 31(4): 043201.
No Suggested Reading articles found!