Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 030202    DOI: 10.1088/1674-1056/28/3/030202
GENERAL Prev   Next  

Boundary scheme for lattice Boltzmann modeling of micro-scale gas flow in organic-rich pores considering surface diffusion

Hong Zuo(左鸿)1,2, Shou-Chun Deng(邓守春)1, Hai-Bo Li(李海波)1
1 State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We propose a boundary scheme for addressing multi-mechanism flow in a porous medium in slip and early transition flow regimes, which is frequently encountered in shale gas reservoirs. Micro-gaseous flow in organic-rich shale involves a complex flow mechanism. A self-developed boundary scheme that combines the non-equilibrium extrapolation scheme and the combined diffusive reflection and bounce-back scheme (half-way DBB) to embed the Langmuir slip boundary into the single-relaxation-time lattice Boltzmann method (SRT-LBM) enables us to describe this process, namely, the coupling effect of micro-gaseous flow and surface diffusion in organic-rich nanoscale pores. The present LBM model comes with the careful consideration of the local Knudsen number, local pressure gradient, viscosity correction model, and regularization procedure to account for the rarefied gas flows in irregular pores. Its validity and accuracy are verified by several benchmarking cases, and the calculated results by this boundary scheme accord well with our analytical solutions. This boundary scheme shows a higher accuracy than the existing studies. Additionally, a subiteration strategy is presented to tackle the coupled micro-gaseous flow and surface diffusion, which necessitates the iteration process matching of these two mechanisms. The multi-mechanism flow in the self-developed irregular pores is also numerically investigated and analyzed over a wide range of parameters. The results indicate that the present model can effectively capture the coupling effect of micro-gaseous flow and surface diffusion in a tree-like porous medium.
Keywords:  lattice Boltzmann method (LBM)      surface diffusion      Langmuir slip model      boundary scheme  
Received:  16 August 2018      Revised:  03 January 2019      Accepted manuscript online: 
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  05.20.Dd (Kinetic theory)  
  02.60.Cb (Numerical simulation; solution of equations)  
Corresponding Authors:  Shou-Chun Deng     E-mail:  scdeng@whrsm.ac.cn

Cite this article: 

Hong Zuo(左鸿), Shou-Chun Deng(邓守春), Hai-Bo Li(李海波) Boundary scheme for lattice Boltzmann modeling of micro-scale gas flow in organic-rich pores considering surface diffusion 2019 Chin. Phys. B 28 030202

[1] Landry C J, Prodanović M and Eichhubl P 2016 Int. J. Coal Geology 159 120
[2] Zuo H, Deng S, Huang Z, Xiao C, Zeng Y and Jiang J 2018 Int. J. Oil, Gas and Coal Technology
[3] Yin Y, Qu Z G and Zhang J F 2017 Fuel 210 569
[4] Wu K, Li X, Guo C, Wang C and Chen Z 2016 Spe Journal. 21 1
[5] Kazemi M and Takbiri-Borujeni A 2015 Int. J. Coal Geology 146 188
[6] Cui X, Bustin A M M and Bustin R M 2009 Geofluids 9 208
[7] Hannon M J and Finsterle S 2017 Transp. Porous Media. 123 545
[8] Liu H, Dan G and Chen J 2018 Petroleum Science 15 116
[9] Sander R, Pan Z and Connell L D 2017 J. Nat. Gas Sci. & Eng. 37 248
[10] Zhao J, Yao J, Zhang L, Sui H and Zhang M 2016 Int. J. Heat & Mass Transfer 103 1098
[11] Yu H, Chen J, Zhu Y B, Wang F C and Wu H A 2017 Int. J. Heat & Mass Transfer 111 1172
[12] Xue Q, Tao Y, Liu Z, Lu S, Li X, Wu T, Jin Y and Liu X 2015 Rsc Adv. 5 25684
[13] Lin K, Yuan Q and Zhao Y P 2017 Comput. Mater. Sci. 133 99
[14] Christou C and Dadzie S K 2016 Spe Journal. 21 938
[15] Geng L, Li G, Zitha P, Tian S, Sheng M and Fan X 2016 Fuel 181 887
[16] Qian Y H, D'Humiéres D and Lallemand P 1992 Epl 17 479
[17] Shan X, Yuan X and Chen H 2006 J. Fluid Mech. 550 413
[18] Guo Z and Shu C 2013 Lattice Boltzmann Method and its Applications in Engineering (Singapore: World Scientific Publishing Co. Pte. Ltd)
[19] Succi S 2001 The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (New York: Clarendon Press)
[20] Guo Z and Zheng C 2008 Int. J. Comput. Fluid Dyn. 22 465
[21] Guo Z, Zheng C and Shi B 2008 Phys. Rev. E 77 036707
[22] Guo Z L, Shi B C and Zheng C G 2007 Epl 80 24001
[23] Tang G H, Zhang Y H, Gu X J and Emerson D R 2008 Epl 83 226
[24] Zhang Y H, Gu X J, Barber R W and Emerson D R 2006 Phys. Rev. E 74 046704
[25] Chikatamarla S S and Karlin I V 2009 Phys. Rev. E 79 046701
[26] Chikatamarla S S and Karlin I V 2006 Phys. Rev. Lett. 97 190601
[27] De I L, Rouet J L and Izrar B 2011 Phys. Rev. E 84 066705
[28] Dehdashti E 2016 Chin. Phys. B 25 024702
[29] Zuo W, Yan L and Jia-Zhong Z 2016 Acta Phys. Sin. 65 291 (in Chinese)
[30] Guo Z, Shi B and Zheng C 2011 Computers & Mathematics with Applications 61 3519
[31] Chai Z, Guo Z, Zheng L and Shi B 2008 J. Appl. Phys. 104 014902
[32] Chai Z, Shi B, Guo Z and Lu J 2010 Commun. Comput. Phys. 8 1052
[33] Tao S and Z G 2015 Phys. Rev. E 91 043305
[34] Luo L S 2009 J. Comput. Phys. 228 147
[35] Ansumali S and Karlin I V 2002 Phys. Rev. E 66 026311
[36] Zhao J, Yao J, Li A, Zhang M, Zhang L, Yang Y and Sun H 2016 J. Appl. Phys. 120 579
[37] Tao S and Guo Z 2017 Chem. Eng. & Technol. 40 1758
[38] Tao S, Zhang H and Guo Z 2017 J. Aerosol Sci. 103 105
[39] Fathi E and Akkutlu I Y 2012 Spe J. 18 27
[40] Wang J, Kang Q, Chen L and Rahman S S 2017 Int. J. Coal Geology 169 62
[41] Wang L, Zeng Z, Zhang L, Qiao L, Zhang Y and Lu Y 2018 Physica A 495 180
[42] Guo Z, Zheng C and Shi B 2002 Phys. Fluids 14 2007
[43] Inamuro T, Yoshino M and Ogino F 1995 Phys. Fluids 7 2928
[44] Ning Y, Jiang Y, Liu H and Qin G 2015 J. Nat. Gas Sci. & Eng. 26 345
[45] Chen Y Y, Yi H H and Li H B 2008 Chin. Phys. Lett. 25 184
[46] Chen L, Fang W, Kang Q, De'Haven H J, Viswanathan H S and Tao W Q 2015 Phys. Rev. E 91 033004
[47] Chen L, Kang Q, Dai Z, Viswanathan H S and Tao W 2015 Fuel 160 346
[48] Wang J, Chen L, Kang Q and Rahman S S 2016 Fuel 181 478
[49] Tan Y L, Teng G R and Ze Z 2010 Chin. Phys. Lett. 27 174
[50] Ren J, Guo P, Guo Z and Wang Z 2015 Transp. Porous Media 106 285
[51] Ren J, Guo P, Peng S and Yang C 2016 J. Nat. Gas Sci. & Eng. 29 7
[52] Ren J 2015 Study of Microscopic Transport Mechanisms of Shale Gas Using the Lattice Boltzmann method (Chengdu: Southwest Petroleum University)
[53] Ren J, Guo P, Peng S and Yang C 2016 J. Nat. Gas Sci. & Eng. 29 169
[54] Myong R S 2004 J. Comput. Phys. 195 655
[55] Bhattacharya D K and Eu B C 1987 Phys. Rev. A 35 821
[56] Wang J, Li C, Kang Q and Rahman S S 2016 Int. J. Heat & Mass Transfer 95 94
[57] Succi S 2002 Phys. Rev. Lett. 89 064502
[58] Guo Z S 2013 Lattice Boltzmann Method and its Applications in Engineering
[59] Zhang R, Shan X and Chen H 2006 Phys. Rev. E 74 046703
[60] Suga K 2013 Fluid Dyn. Res. 45 034501
[61] Latt J and Chopard B 2006 Math. & Comput. Simul. 72 165
[62] Zhang T Y and Suen C Y 1984 Communications of the ACM 27 236
[63] Silin D and Patzek T 2006 Phys. A 371 336
[64] Ohwada T, Sone Y and Aoki K 1989 Phys. Fluids A Fluid Dyn. 1 1588
[65] Li Q, He Y L and Tao W Q 2011 Microfluid. & Nanofluid. 10 607
[66] Shen C, Tian D B, Xie C and Fan J 2004 Microscale Thermophysical Eng. 8 423
[67] Lee T and Lin C L 2005 Phys. Rev. E 71 046706
[68] M Aminpour S G T, Scheuermann A and Li L 2018 Phys. Rev. E 98 043110
[69] Pan C, Luo L S and Miller C T 2006 Comput. & Fluids 35 898
[70] He X, Zou Q, Luo L S and Dembo M 1997 J. Stat. Phys. 87 115
[71] Mousavi M A 2012 Transp. Porous Media 94 537
[72] Sakhaee-Pour A and Bryant S L 2014 Aapg Bull. 98 663
[73] Zou Q and He X 1997 Phys. Fluids 9 1591
[74] Ambrose R J, Hartman R C, Diaz-Campos M, Akkutlu I Y and Sondergeld C H 2012 Spe J. 17 219
[75] Hadjiconstantinou N G 2003 Phys. Fluids 15 2352
[1] Molecular dynamics simulation of nanoscale surface diffusion of heterogeneous adatoms clusters
Muhammad Imran, Fayyaz Hussain, Muhammad Rashid, Muhammad Ismail, Hafeez Ullah, Yongqing Cai, M Arshad Javid, Ejaz Ahmad, S A Ahmad. Chin. Phys. B, 2016, 25(7): 076601.
[2] Surface diffuse discharge mechanism of well-aligned atmospheric pressure microplasma arrays
Ren-Wu Zhou(周仁武), Ru-Sen Zhou(周儒森), Jin-Xing Zhuang(庄金星), Jiang-Wei Li(李江炜), Mao-Dong Chen(陈茂冬), Xian-Hui Zhang(张先徽), Dong-Ping Liu(刘东平), Kostya (Ken) Ostrikov, Si-Ze Yang(杨思泽). Chin. Phys. B, 2016, 25(4): 045202.
[3] Step instability of the In0.2Ga0.8As (001) surface during annealing
Zhang Bi-Chan(张毕禅), Zhou Xun(周勋), Luo Zi-Jiang(罗子江) , Guo Xiang(郭祥), and Ding Zhao(丁召) . Chin. Phys. B, 2012, 21(4): 048101.
[4] First-principles study of diffusion behaviour of point defects in the O-terminated (0001) surface in wurtzite ZnO
Huang Gui-Yang(黄贵洋), Wang Chong-Yu(王崇愚), and Wang Jian-Tao(王建涛) . Chin. Phys. B, 2010, 19(1): 013101.
[5] Surface diffusion of Si, Ge and C adatoms on Si (001) substrate studied by the molecular dynamics simulation
Chen Zhi-Hui(陈智辉), Yu Zhong-Yuan(俞重远), Lu Peng-Fei(芦鹏飞), and Liu Yu-Min(刘玉敏). Chin. Phys. B, 2009, 18(10): 4591-4597.
[6] Surface morphology evolution of Si(110) by ion sputtering as a function of sample temperature
Qi Le-Jun (漆乐俊), Ling Li (凌立), Li Wei-Qing (李维卿), Yang Xin-Ju (杨新菊), Gu Chang-Xin (顾昌鑫), Lu Ming (陆明). Chin. Phys. B, 2005, 14(8): 1626-1630.
No Suggested Reading articles found!