|
|
Statistics of states generated by quantum-scissors device |
Ming-Hao Wang(王明浩)1,2, Guo-An Yan(闫国安)1,3 |
1 State Key Laboratory of Magnetic Resonances and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 School of Physics and Technology, Wuhan University, Wuhan 430072, China |
|
|
Abstract Generating desired states is a prerequisite in quantum information. Some desired states can be generated by a quantum-scissors device (QSD). We present a detailed analysis of the properties of the generated states, including average photon numbers and intensity gains. The theoretical analysis shows that there is a nondeterministic amplification in terms of the average photon number under the condition that the average photon number of the input state is less than 1. In contrast to the input states, the generated states show the nonclassical property described by the negativity of the Wigner function. Furthermore, we generalize the QSD to truncate arbitrary photon number terms of the input states, which may be useful in high-dimensional quantum information processing.
|
Received: 16 November 2018
Revised: 26 December 2018
Accepted manuscript online:
|
PACS:
|
03.65.-w
|
(Quantum mechanics)
|
|
03.67.-a
|
(Quantum information)
|
|
89.70.-a
|
(Information and communication theory)
|
|
41.85.-p
|
(Beam optics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11725524, 61471356, and 11674089). |
Corresponding Authors:
Ming-Hao Wang, Guo-An Yan
E-mail: wang_ming_hao@126.com;yanguoan@126.com
|
Cite this article:
Ming-Hao Wang(王明浩), Guo-An Yan(闫国安) Statistics of states generated by quantum-scissors device 2019 Chin. Phys. B 28 030302
|
[1] |
Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P and Milburn G J 2007 Rev. Mod. Phys. 79 135
|
[2] |
Pernice W H P, Schuck C, Minaeva O, Li M, Goltsman G, Sergienko A V and Tang H X 2012 Nat. Commun. 3 1325
|
[3] |
Tang S Q, Yuan J B, Wang X W and Kuang L M 2015 Chin. Phys. Lett. 32 040303
|
[4] |
Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz, J, Pichler H and Zoller P 2017 Nature 541 473
|
[5] |
Tischler N, Rockstuhl C and Słowik K 2018 Phys. Rev. X 8 021017
|
[6] |
Cirac J I, Zoller P, Kimble H J and Mabuch H 1997 Phys. Rev. Lett. 78 3221
|
[7] |
Tsoi T S and Law C K 2009 Phys. Rev. A 80 033823
|
[8] |
Chen C C, Bo C, Niu M Y Z, Xu F H, Zhang Z S, Shaprio J H and Wong F N C 2017 Opt. Express 25 7300
|
[9] |
Tao L, Miranowicz A, Hu X D, Xia K Y and Nori F 2018 Phys. Rev. A 97 062318
|
[10] |
Wang C R, Li D C, Zhang F Y and Xu R M 2013 Chin. Phys. Lett. 30 030302
|
[11] |
Ofek N, Petrenko A, Heeres R, Reinhold P, Leghtas Z, Vlastakis B, Liu Y H, Frunzio L, Girvin S M, Jiang L, Mirrahimi M, Devoret M H and Schoelkopf R J 2016 Nature 536 441
|
[12] |
Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information (10th Anniversary edn.) (New York: Cambridge University Press)
|
[13] |
Dong L, Xiu X M, Gao Y J and Yi X X 2013 Quantum Inf. Process. 12 1787
|
[14] |
Li C Y, Zhang Z R, Sun S H, Jiang M S and Liang L M 2013 J. Opt. Soc. Am. B 30 123
|
[15] |
Zhang W, Rui P S, Zhang Z Y and Yang Q 2014 New J. Phys. 16 083019
|
[16] |
Wenger J, Tualle-Brouri R and Grangier P 2004 Phys. Rev. Lett. 92 153601
|
[17] |
Parigi V, Zavatta A, Kim M and Bellini M 2007 Science 317 1890
|
[18] |
Pegg D T, Phillips L S and Barnett S M 1998 Phys. Rev. Lett. 81 1604
|
[19] |
Pittman T B, Jacobs B C and Franson J D 2001 Phys. Rev. A 64 062311
|
[20] |
Pittman T B, Fitch M J, Jacobs B C and Franson J D 2003 Phys. Rev. A 68 032316
|
[21] |
Fiurášek J 2009 Phys. Rev. A 80 053822
|
[22] |
Koniorczyk M, Kurucz Z, Gábris A and Janszky J 2000 Phys. Rev. A 62 013802
|
[23] |
Villas-Boas C J, Guimarães Y, Moussa M H Y and Baseia B 2001 Phys. Rev. A 63 055801
|
[24] |
Caves C M 1982 Phys. Rev. D 26 1817
|
[25] |
Scarani V, Iblisdir S, Gisin N and Acin A 2005 Rev. Mod. Phys. 77 1225
|
[26] |
Milonni P W and Hardies M L 1982 Phys. Lett. A 92 321
|
[27] |
Wootters W K and Zurek W H 1982 Nature 299 802
|
[28] |
Zavatta A, Fiurášek J and Bellini M 2011 Nat. Photonics 5 52
|
[29] |
Menzies D and Croke S 2009 arXiv:0903.4181 [quant-ph]
|
[30] |
Ralph T C and Lund A P 2009 AIP Conference Proceeding 1110 155
|
[31] |
Ferreyrol F, Barbieri M, Blandino R, Fossier S, Tualle-Brouri R and Grangier P 2010 Phys. Rev. Lett. 104 123603
|
[32] |
Zhao H X, Xu X X and Yuan H C 2017 Opt. Commun. 382 127
|
[33] |
Xu X X, Hu L Y and Liao Z Y 2018 J. Opt. Soc. Am. B 35 000174
|
[34] |
Barnett S and Radmore P 2002 Methods in Theoretical Quantum Optics (London: Oxford University Press)
|
[35] |
Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H and Lloyd S 2012 Rev. Mod. Phys. 84 621
|
[36] |
Xu X X and Yuan H C 2016 Phys. Lett. A 380 2342
|
[37] |
Scully M O and Zubairy M S 1997 Quantum Optics (London: Oxford University Press)
|
[38] |
Lee H, Kok P, Cerf N J and Dowling J P 2002 Phys. Rev. A 65 030101
|
[39] |
Zou X B, Pahlke K and Mathis W 2002 Phys. Rev. A 66 014102
|
[40] |
Kok P, Lee H and Dowling J P 2002 Phys. Rev. A 65 052104
|
[41] |
Fiurášek J 2002 Phys. Rev. A 65 053818
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|