Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 060401    DOI: 10.1088/1674-1056/ac48ff
GENERAL Prev   Next  

Nonlinear dynamical wave structures of Zoomeron equation for population models

Ahmet Bekir1,† and Emad H M Zahran2
1 Neighbourhood of Akcaglan, Imarli Street, Number:28/4, 26030, Eskisehir, Turkey;
2 Departments of Mathematical and Physical Engineering, Benha University, Faculty of Engineering, Shubra, Egypt
Abstract  The nonlinear dynamical exact wave solutions to the non-fractional order and the time-fractional order of the biological population models are achieved for the first time in the framwork of the Paul-Painlevé approach method (PPAM). When the variables appearing in the exact solutions take specific values, the solitary wave solutions will be easily obtained. The realized results prove the efficiency of this technique.
Keywords:  (2+1)-dimensional non-fractional Zoomeron equation      time-fractional biological population model      Paul-Painlevé approach method      traveling wave solutions  
Received:  26 September 2021      Revised:  16 December 2021      Accepted manuscript online:  11 January 2022
PACS:  04.20.Jb (Exact solutions)  
  05.45.Yv (Solitons)  
  94.05.Fg (Solitons and solitary waves)  
Corresponding Authors:  Ahmet Bekir     E-mail:  bekirahmet@gmail.com

Cite this article: 

Ahmet Bekir and Emad H M Zahran Nonlinear dynamical wave structures of Zoomeron equation for population models 2022 Chin. Phys. B 31 060401

[1] Calogero F and Degasperis A 1976 Nuovo Cimento B 32 201
[2] Shakeri E and Dehghan M 2007 Comput. Math. Appl. 54 1197
[3] Bekir A and Guner O 2013 Chin. Phys. B 22 110202
[4] Jabbari A, Kheiri H and Bekir A 2011 Comput. Math. Appl. 62 2177
[5] Bekir A and Zahran E H M 2020 Optik 223 165233
[6] Li N and Liu X Q 2013 Acta Phys. Sin. 62 160203 (in Chinese)
[7] Bekir A and Zahran E H M 2021 Optik 240 166939
[8] Song C Q, Xiao D M and Zhu Z N 2017 Chin. Phys. B 26 100204
[9] Bekir A and Zahran E H M 2021 Phys. Scr. 96 055212
[10] Song M, Beidan W and Jun C 2020 Chin. Phys. B 29 100206
[11] Shehata M S M, Rezazadeh H, Zahran E H M, Tala-Tebue E and Bekir A 2019 Commun. Theor. Phys. 71 1275
[12] Bekir A and Zahran E H M 2021 Pramana J. Phys. 95 158
[13] Shehata M S M, Rezazadeh H, Jawad A J M, Zahran E H M and Bekir A 2021 Revista Mexicana de Fisica 67 050704
[14] Huang L L, Qiao Z J and Chen Y 2018 Chin. Phys. B 27 020201
[15] Zahran E H M and Khater M M 2016 Appl. Math. Model. 40 1769
[16] Khater M M, Lu D and Zahran E H M 2017 Appl. Math. Inf. Sci. 11 1347
[17] Zahran E H M and Bekir A 2021 Opt. Quantum Electron. 53 680
[18] Wazwaz A M 2004 Appl. Math. Comput. 154 713
[19] Bekir A, Zahran E H M and Güner O 2020 Int. J. Mod. Phys. B 35 2150025
[20] Zhang S, Jing-Lin T and Wei W 2008 Phys. Lett. A 372 2254
[21] Fan E 2000 Phys. Lett. A 277 212
[22] Abazari R 2011 Appl. Math. Sci. 5 2943
[23] Khan K, Akbar M A, Salam A and Islam H 2014 Ain Shams Engineering Journal 5 877
[24] Bi Y, Zhang Z, Liu Q and Liu T 2021 Commun. Nonlinear Sci. Numer. Simul. 102 105918
[25] Wenhui Z, Hongwei Y and Dezhi G 2020 Mathematical Modeling and Its Applications 466 73
[26] Bekir A, Ayhan B and Ozer M N 2013 Chin. Phys. B 22 010202
[27] Bekir A and Zahran E H M 2020 Int. J. Mod. Phys. B 34 2050270
[28] Bekir A and Zahran E H M 2021 Opt. Quantum Electron. 53 118
[29] Caputo M and Mainardi F 1971 Revista del Nuovo Cimento 161 198
[30] Caputo M 1967 J. Royal Astronom. Soc. 13529 539
[31] Samko S G, Kilbas A A and Marichev O I 1993 Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach Science Publishers, Switzerland)
[32] Jumarie G 2006 Comput. Math. Appl. 51 1367
[33] Jumarie G 2006 Comput. Math. Appl. 51 1367
[34] Jumarie G 2009 Appl. Math. Lett. 22 378
[35] Kilbas A A, Srivastava H M and Trujillo J J 2006 Theory and Applications of Fractional Differential Equations-North-Holland Mathematical Studies 204 (Amsterdam: Elsevier)
[36] Bekir A and Guner O 2014 Ain Shams Eng. Journal 5 959
[37] Gupta V G and Kumar P 2013 International Journal of Science and Research 6 14
[38] Gurtin M Eand Maccamy R C 1977 Math. Biol. Sci. 54 35
[39] Lu Y G 2000 Appl. Math. Lett. 13 123
[40] Liu Y, Li Z and Zhang Y 2011 Fract. Diff. Calc. 1 117
[41] Khalil R, Al Horani M, Yousef A and Sababheh M 2014 J. Comput. Appl. Math. 265 65
[42] Ain Q T and He J H 2019 Thermal Science 23 1707
[1] Novel traveling wave solutions and stability analysis of perturbed Kaup-Newell Schrödinger dynamical model and its applications
Xiaoyong Qian(钱骁勇), Dianchen Lu(卢殿臣), Muhammad Arshad, and Khurrem Shehzad. Chin. Phys. B, 2021, 30(2): 020201.
[2] Dynamics of traveling wave solutions to a highly nonlinear Fujimoto-Watanabe equation
Li-Juan Shi(师利娟), Zhen-Shu Wen(温振庶). Chin. Phys. B, 2019, 28(4): 040201.
[3] Dynamical behaviors of traveling wave solutions to a Fujimoto-Watanabe equation
Zhen-Shu Wen(温振庶), Li-Juan Shi(师利娟). Chin. Phys. B, 2018, 27(9): 090201.
[4] A connection between the (G'/G)-expansion method and the truncated Painlevé expansion method and its application to the mKdV equation
Zhao Yin-Long (赵银龙), Liu Yin-Ping (柳银萍), and Li Zhi-Bin (李志斌). Chin. Phys. B, 2010, 19(3): 030306.
No Suggested Reading articles found!