CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Photoluminescence in fluorescent 4H-SiC single crystal adjusted by B, Al, and N ternary dopants |
Shi-Yi Zhuo(卓世异), Xue-Chao Liu(刘学超), Wei Huang(黄维), Hai-Kuan Kong(孔海宽), Jun Xin(忻隽), Er-Wei Shi(施尔畏) |
Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China |
|
|
Abstract This paper reports the sensitive effect of photoluminescence peak intensity and transmittance affected by B, Al, and N dopants in fluorescent 4H-SiC single crystals. The crystalline type, doping concentration, photoluminescence spectra, and transmission spectra were characterized at room temperature. It is found that the doped 4H-SiC single crystal emits a warm white light covering a wide range from 460 nm to 720 nm, and the transmittance increases from ~10% to ~60% with the fluctuation of B, Al, and N ternary dopants. With a parameter of CD-A, defined by B, Al, and N concentration, the photoluminescence and transmittance properties can be adjusted by optimal doping regulation.
|
Received: 13 September 2018
Revised: 29 October 2018
Accepted manuscript online:
|
PACS:
|
71.20.Nr
|
(Semiconductor compounds)
|
|
42.70.-a
|
(Optical materials)
|
|
78.20.-e
|
(Optical properties of bulk materials and thin films)
|
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFB0405700 and 2016YFB0400400), the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 51602331 and 61404146), and the Shanghai Science and Technology Innovation Action Plan Program, China (Grant No. 17511106200). |
Corresponding Authors:
Xue-Chao Liu, Wei Huang
E-mail: xcliu@mail.sic.ac.cn;whsic@outlook.com
|
Cite this article:
Shi-Yi Zhuo(卓世异), Xue-Chao Liu(刘学超), Wei Huang(黄维), Hai-Kuan Kong(孔海宽), Jun Xin(忻隽), Er-Wei Shi(施尔畏) Photoluminescence in fluorescent 4H-SiC single crystal adjusted by B, Al, and N ternary dopants 2019 Chin. Phys. B 28 017101
|
[1] |
Ou Y Y, Aijaz I, Jokubavicius V, Yakimova R, Syväjärvi M and Ou H Y 2013 Opt. Mater. Express 3 86
|
[2] |
Lu W F, Ou Y Y, Jokubavicius V, Fadil A, Syväjärvi M, Petersen P M and Ou H Y 2016 Phys. Scr. 91 074001
|
[3] |
Mckittrick J and Shea-Rohwer L E 2014 J. Am. Ceram. Soc. 97 1327
|
[4] |
Lu W F, Ou Y Y, Fiordaliso E M, Iwasa Y, Jokubavicius V, Syväjärvi M, Kamiyama S, Petersen P M and Ou H Y 2017 Sci. Rep. 7 9798
|
[5] |
Ou H Y, Ou Y Y, Argyraki A, Schimmel S, Kaiser M, Wellmann P, Linnarsson M K, Jokubavicius V, Sun J W, Liljedahl R and Syväjärvi M 2014 Eur. Phys. J. B 87 58
|
[6] |
Kamiyama S, Iwaya M, Takeuchi T, Akasaki I, Syväjärvi M and Yakimova R 2011 J. Semicond. 32 013004
|
[7] |
Ou Y Y, Corell D D, Dam-Hansen C, Petersen P M and Ou H Y 2011 Opt. Express 19 A166
|
[8] |
Ikeda M, Hayakawa T, Yamagiwa S, Matsumani H and Tanaka T 1979 J. Appl. Phys. 50 8215
|
[9] |
Kamiyama S, Maeda T, Nakamura Y, Iwaya M, Amano H and Akasaki I 2006 J. Appl. Phys. 99 093108
|
[10] |
Jokubavicius V, Hens P, Liljedahl R, Sun J W, Kaiser M, Wellmann P, Sano S, Yakimova R, Kamiyama S and Syväjärvi M 2012 Thin Solid Films 522 7
|
[11] |
Manolis G, Gulbinas K, Grivickas V, Jokubavicius V, Linnarsson M K, and Syväjärvi M 2014 Mater. Sci. Eng. 56 012006
|
[12] |
Camassel J, Juillaguet S, Planes N, Raymond A, Grosse P, Basset G, Faure C, Couchaud M, Bluet J M, Chourou K, Anikin M and Madar R 1999 Mat. Sci. Eng. B 61-62 258
|
[13] |
Gavryushin V, Gulbinas K, Grivickas V, Karaliûnas M, Stasiûnas M, Jokubavicius V, Sun J W and Syväjärvi M 2014 Mat. Sci. Eng. 56 012003
|
[14] |
Ikeda M, Matsunami H and Tanaka T 1980 Phys. Rev. B 22 2842
|
[15] |
Zhuo S Y, Liu X, Gao P, Yan C F and Shi E W 2017 J. Inorg. Mater. 32 51 (in Chinese)
|
[16] |
Nakashima S and Harima H 1997 Phys. Stat. Sol. (a) 162 39
|
[17] |
Wei R S, Chen X F, Wang L H, Song S, Yang K, Hu X B, Peng Y and Xu X G 2013 Int. J. Electrochem. Sci. 8 7099
|
[18] |
Ou Y Y, Jokubavlcius V, Linnarsson M, Yakimova R, Syväjärvi M and Ou H Y 2012 Phys. Scr. T148 014003
|
[19] |
Syväjärvi M, Müller J, Sun J W, Grlvlckas V, Ou Y Y, Jokubavlclus V, Hens P, Kaisr M, Ariyawong K, Gulbinas K, Hens P, Liljedahl R, Linnarsson M K, Kamiyama S, Wellmann P, Spiecker E and Ou H Y 2012 Phys. Scr. T148 014002
|
[20] |
Ou Y Y, Jokubavicius V, Kamiyama S, Liu C, Berg R W, Linnarsson M, Yakimova R, Syväjärvi M and Ou H Y 2011 Opt. Mater. Express 1 1439
|
[21] |
Zhuo S Y, Liu X C, Xu T X, Yan C F and Shi E W 2018 AIP Adv. 8 075130
|
[22] |
Limpijumnong S, Lambrecht W R L, RashKeev S N and Segall B 1999 Phys. Rev. B 59 12890
|
[23] |
Sridhara S G, Bai S, Shigiltchoff O, Devaty R P and Choyke W J 2000 Mater. Sci. Forum 338-342 551
|
[24] |
Wellmann P J and Weingärtner R 2003 Mat. Sci. Eng. B 102 262
|
[25] |
Sun J W, Kamiyama S, Jokubavicius V, Peyre H, Yakimova R, Juillaguet S and Syväjärvi M 2012 J. Phys. D-Appl. Phys. 45 235107
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|