|
|
Spin freezing in the van der Waals material Mn2Ga2S5 |
Jie Shen(沈洁)1,2, Xitong Xu(许锡童)1, Miao He(何苗)1,2, Yonglai Liu(刘永来)1,2, Yuyan Han(韩玉岩)1,2, and Zhe Qu(屈哲)1,2,† |
1 Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; 2 Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract Geometrical frustration in low-dimensional magnetic systems has been an intriguing research aspect, where the suppression of conventional magnetic order may lead to exotic ground states such as spin glass or spin liquid. In this work we report the synthesis and magnetism study of the monocrystalline Mn$_2$Ga$_2$S$_5$, featuring both the van der Waals structure and a bilayered triangular Mn lattice. Magnetic susceptibility reveals a significant antiferromagnetic interaction with a Curie-Weiss temperature $\theta_{\rm w}\sim-260$ K and a high spin $S=5/2$ Mn$^{2+}$ state. However, no long range magnetic order has been found down to 2 K, and a spin freezing transition is found to occur at around 12 K well below its $\theta_{\rm w}$. This yields a frustration index of $f = -\theta_{\rm w}/T_{\rm f} \approx 22$, an indication that the system is highly frustrated. The absence of a double-peak structure in magnetic specific heat compared with the $TM_2$S$_4$ compounds implies that the spin freezing behavior in Mn$_2$Ga$_2$S$_5$ is a result of the competition between exchange interactions and the 2D crystalline structure. Our results suggest that the layered Mn$_2$Ga$_2$S$_5$ would be an excellent candidate for investigating the physics of 2D magnetism and spin disordered state.
|
Received: 16 March 2022
Revised: 23 March 2022
Accepted manuscript online: 08 April 2022
|
PACS:
|
71.20.Nr
|
(Semiconductor compounds)
|
|
75.50.-y
|
(Studies of specific magnetic materials)
|
|
75.50.Lk
|
(Spin glasses and other random magnets)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1832214, 11774007, U2032213, and 12104461). |
Corresponding Authors:
Zhe Qu
E-mail: zhequ@hmfl.ac.cn
|
Cite this article:
Jie Shen(沈洁), Xitong Xu(许锡童), Miao He(何苗), Yonglai Liu(刘永来), Yuyan Han(韩玉岩), and Zhe Qu(屈哲) Spin freezing in the van der Waals material Mn2Ga2S5 2022 Chin. Phys. B 31 067105
|
[1] Ramirez A 2001 Handbook of Magnetic Materials (Elsevier) Vol. 13 pp. 423–520 [2] Nakatsuji S, Nambu Y, Tonomura H, Sakai O, Jonas S, Broholm C, Tsunetsugu H, Qiu Y and Maeno Y 2005 Science 309 1697 [3] Ye F, Ren Y, Huang Q, Fernandez-Baca J A, Dai P, Lynn J W and Kimura T 2006 Phys. Rev. B 73 220404 [4] Kermarrec E, Marjerrison C A, Thompson C M, Maharaj D D, Levin K, Kroeker S, Granroth G E, Flacau R, Yamani Z, Greedan J E and Gaulin B D 2015 Phys. Rev. B 91 075133 [5] Lotz B 2012 Macromolecules 45 2175 [6] Canals B, Chioar I A, Nguyen V D, Hehn M, Lacour D, Montaigne F, Locatelli A, Mentes T O, Burgos B S and Rougemaille N 2016 Nat. Commun. 7 11446 [7] Gardner J S, Gingras M J P and Greedan J E 2010 Rev. Mod. Phys. 82 53 [8] Ramirez A P 1994 Annu. Rev. Mater. Sci. 24 453 [9] Katsufuji T and Takagi H 2004 Phys. Rev. B 69 064422 [10] Hagemann I S, Huang Q, Gao X P A, Ramirez A P and Cava R J 2001 Phys. Rev. Lett. 86 894 [11] Wang R F, Nisoli C, Freitas R S, Li J, McConville W, Cooley B J, Lund M S, Samarth N, Leighton C, Crespi V H and Schiffer P 2006 Nature 439 303 [12] Ramirez A P, Espinosa G P and Cooper A S 1992 Phys. Rev. B 45 2505 [13] Wills A S, Harrison A, Ritter C and Smith R I 2000 Phys. Rev. B 61 6156 [14] Petrenko O A, Ritter C, Yethiraj M and McK Paul D 1998 Phys. Rev. Lett. 80 4570 [15] Gardner J S, Dunsiger S R, Gaulin B D, Gingras M J P, Greedan J E, Kiefl R F, Lumsden M D, MacFarlane W A, Raju N P, Sonier J E, Swainson I and Tun Z 1999 Phys. Rev. Lett. 82 1012 [16] Ma Z, Ran K, Wang J, Bao S, Cai Z, Li S and Wen J 2018 Chin. Phys. B 27 106101 [17] Wannier G H 1950 Phys. Rev. 79 357 [18] Kurumaji T, Nakajima T, Hirschberger M, Kikkawa A, Yamasaki Y, Sagayama H, Nakao H, Taguchi Y, hisa Arima T and Tokura Y 2019 Science 365 914 [19] Ye F, Fernandez-Baca J A, Fishman R S, Ren Y, Kang H J, Qiu Y and Kimura T 2007 Phys. Rev. Lett. 99 157201 [20] Fritsch K, Ross K A, Granroth G E, Ehlers G, Noad H M L, Dabkowska H A and Gaulin B D 2017 Phys. Rev. B 96 094414 [21] Dai J, Zhou P, Wang P S, Pang F, Munsie T J, Luke Graeme M, Zhang J S and Yu W Q 2015 Chin. Phys. B 24 127508 [22] Nakatsuji S, Nambu Y, Onuma K, Jonas S, Broholm C and Maeno Y 2007 J. Phys.-Condes. Matter 19 145232 [23] Takeya H, Ishida K, Kitagawa K, Ihara Y, Onuma K, Maeno Y, Nambu Y, Nakatsuji S, MacLaughlin D E, Koda A and Kadono R 2008 Phys. Rev. B 77 054429 [24] Nakatsuji S, Tonomura H, Onuma K, Nambu Y, Sakai O, Maeno Y, Macaluso R T and Chan J Y 2007 Phys. Rev. Lett. 99 157203 [25] Myoung B R, Lim J T and Kim C S 2017 J. Magn. Magn. Mater. 438 121 [26] Dalmas de Réotier P, Yaouanc A, MacLaughlin D E, Zhao S, Higo T, Nakatsuji S, Nambu Y, Marin C, Lapertot G, Amato A and Baines C 2012 Phys. Rev. B 85 140407 [27] Li K, Jin S, Guo J, Xu Y, Su Y, Feng E, Liu Y, Zhou S, Ying T, Li S, Wang Z, Chen G and Chen X 2019 Phys. Rev. B 99 054421 [28] Smerald A, Ueda H T and Shannon N 2015 Phys. Rev. B 91 174402 [29] Nambu Y and Nakatsuji S 2011 J. Phys.-Condes. Matter 23 164202 [30] Tomita T, Nambu Y, Nakatsuji S, Koeda S, Hedo M and Uwatoko Y 2009 J. Phys. Soc. Jpn. 78 094603 [31] Takubo K, Mizokawa T, Nambu Y and Nakatsuji S 2009 Phys. Rev. B 79 134422 [32] Nakatsuji S, Nambu Y and Onoda S 2010 J. Phys. Soc. Jpn. 79 011003 [33] Liao C, Jin Y, Zhang W, Zhu Z and Chen M 2020 Chin. Phys. Lett. 37 107505 [34] Pardo M P, Fourcroy P H and Flahaut J 1975 Mater. Res. Bull. 10 665 [35] Bao J K, Li L, Tang Z T, Liu Y, Li Y K, Bai H, Feng C M, Xu Z A and Cao G H 2015 Phys. Rev. B 91 180404 [36] Ramirez A P 1994 Annu. Rev. Mater. Sci. 24 453 [37] Lin M and Hacker H 1968 Solid State Commun. 6 687 [38] Rimet R, Buder R, Schlenker C, Roques R and Zanchetta J 1981 Solid State Commun. 37 693 [39] Heikens H, Wiegers G and van Bruggen C 1977 Solid State Commun. 24 205 [40] Ahmad T, Ramanujachary K V, Lofland S E and Ganguli A K 2004 J. Mater. Chem. 14 3406 [41] Bouvier M, Lethuillier P and Schmitt D 1991 Phys. Rev. B 43 13137 [42] Gratz E, Loewenhaupt M, Divis M, Steiner W, Bauer E, Pillmayr N, Muller H, Nowotny H and Frick B 1991 J. Phys.-Condes. Matter 3 9297 [43] Mezzacapo F and Boninsegni M 2012 Phys. Rev. B 85 060402 [44] Mydosh J A 1993 Spin Glasses: An Experimental Introduction (CRC Press) [45] Lubchenko V and Wolynes P G 2007 Annu. Rev. Phys. Chem. 58 235 [46] Sahu B, Fobasso R D and Strydom A M 2022 J. Magn. Magn. Mater. 543 168599 [47] Mydosh J A 1996 J. Magn. Magn. Mater. 157-158 606 [48] Krizan J W and Cava R J 2014 Phys. Rev. B 89 214401 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|