Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 067105    DOI: 10.1088/1674-1056/ac657c
RAPID COMMUNICATION Prev   Next  

Spin freezing in the van der Waals material Mn2Ga2S5

Jie Shen(沈洁)1,2, Xitong Xu(许锡童)1, Miao He(何苗)1,2, Yonglai Liu(刘永来)1,2, Yuyan Han(韩玉岩)1,2, and Zhe Qu(屈哲)1,2,†
1 Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
2 Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
Abstract  Geometrical frustration in low-dimensional magnetic systems has been an intriguing research aspect, where the suppression of conventional magnetic order may lead to exotic ground states such as spin glass or spin liquid. In this work we report the synthesis and magnetism study of the monocrystalline Mn$_2$Ga$_2$S$_5$, featuring both the van der Waals structure and a bilayered triangular Mn lattice. Magnetic susceptibility reveals a significant antiferromagnetic interaction with a Curie-Weiss temperature $\theta_{\rm w}\sim-260$ K and a high spin $S=5/2$ Mn$^{2+}$ state. However, no long range magnetic order has been found down to 2 K, and a spin freezing transition is found to occur at around 12 K well below its $\theta_{\rm w}$. This yields a frustration index of $f = -\theta_{\rm w}/T_{\rm f} \approx 22$, an indication that the system is highly frustrated. The absence of a double-peak structure in magnetic specific heat compared with the $TM_2$S$_4$ compounds implies that the spin freezing behavior in Mn$_2$Ga$_2$S$_5$ is a result of the competition between exchange interactions and the 2D crystalline structure. Our results suggest that the layered Mn$_2$Ga$_2$S$_5$ would be an excellent candidate for investigating the physics of 2D magnetism and spin disordered state.
Keywords:  geometrical frustration      van der Waals material      spin freezing  
Received:  16 March 2022      Revised:  23 March 2022      Accepted manuscript online:  08 April 2022
PACS:  71.20.Nr (Semiconductor compounds)  
  75.50.-y (Studies of specific magnetic materials)  
  75.50.Lk (Spin glasses and other random magnets)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1832214, 11774007, U2032213, and 12104461).
Corresponding Authors:  Zhe Qu     E-mail:  zhequ@hmfl.ac.cn

Cite this article: 

Jie Shen(沈洁), Xitong Xu(许锡童), Miao He(何苗), Yonglai Liu(刘永来), Yuyan Han(韩玉岩), and Zhe Qu(屈哲) Spin freezing in the van der Waals material Mn2Ga2S5 2022 Chin. Phys. B 31 067105

[1] Ramirez A 2001 Handbook of Magnetic Materials (Elsevier) Vol. 13 pp. 423–520
[2] Nakatsuji S, Nambu Y, Tonomura H, Sakai O, Jonas S, Broholm C, Tsunetsugu H, Qiu Y and Maeno Y 2005 Science 309 1697
[3] Ye F, Ren Y, Huang Q, Fernandez-Baca J A, Dai P, Lynn J W and Kimura T 2006 Phys. Rev. B 73 220404
[4] Kermarrec E, Marjerrison C A, Thompson C M, Maharaj D D, Levin K, Kroeker S, Granroth G E, Flacau R, Yamani Z, Greedan J E and Gaulin B D 2015 Phys. Rev. B 91 075133
[5] Lotz B 2012 Macromolecules 45 2175
[6] Canals B, Chioar I A, Nguyen V D, Hehn M, Lacour D, Montaigne F, Locatelli A, Mentes T O, Burgos B S and Rougemaille N 2016 Nat. Commun. 7 11446
[7] Gardner J S, Gingras M J P and Greedan J E 2010 Rev. Mod. Phys. 82 53
[8] Ramirez A P 1994 Annu. Rev. Mater. Sci. 24 453
[9] Katsufuji T and Takagi H 2004 Phys. Rev. B 69 064422
[10] Hagemann I S, Huang Q, Gao X P A, Ramirez A P and Cava R J 2001 Phys. Rev. Lett. 86 894
[11] Wang R F, Nisoli C, Freitas R S, Li J, McConville W, Cooley B J, Lund M S, Samarth N, Leighton C, Crespi V H and Schiffer P 2006 Nature 439 303
[12] Ramirez A P, Espinosa G P and Cooper A S 1992 Phys. Rev. B 45 2505
[13] Wills A S, Harrison A, Ritter C and Smith R I 2000 Phys. Rev. B 61 6156
[14] Petrenko O A, Ritter C, Yethiraj M and McK Paul D 1998 Phys. Rev. Lett. 80 4570
[15] Gardner J S, Dunsiger S R, Gaulin B D, Gingras M J P, Greedan J E, Kiefl R F, Lumsden M D, MacFarlane W A, Raju N P, Sonier J E, Swainson I and Tun Z 1999 Phys. Rev. Lett. 82 1012
[16] Ma Z, Ran K, Wang J, Bao S, Cai Z, Li S and Wen J 2018 Chin. Phys. B 27 106101
[17] Wannier G H 1950 Phys. Rev. 79 357
[18] Kurumaji T, Nakajima T, Hirschberger M, Kikkawa A, Yamasaki Y, Sagayama H, Nakao H, Taguchi Y, hisa Arima T and Tokura Y 2019 Science 365 914
[19] Ye F, Fernandez-Baca J A, Fishman R S, Ren Y, Kang H J, Qiu Y and Kimura T 2007 Phys. Rev. Lett. 99 157201
[20] Fritsch K, Ross K A, Granroth G E, Ehlers G, Noad H M L, Dabkowska H A and Gaulin B D 2017 Phys. Rev. B 96 094414
[21] Dai J, Zhou P, Wang P S, Pang F, Munsie T J, Luke Graeme M, Zhang J S and Yu W Q 2015 Chin. Phys. B 24 127508
[22] Nakatsuji S, Nambu Y, Onuma K, Jonas S, Broholm C and Maeno Y 2007 J. Phys.-Condes. Matter 19 145232
[23] Takeya H, Ishida K, Kitagawa K, Ihara Y, Onuma K, Maeno Y, Nambu Y, Nakatsuji S, MacLaughlin D E, Koda A and Kadono R 2008 Phys. Rev. B 77 054429
[24] Nakatsuji S, Tonomura H, Onuma K, Nambu Y, Sakai O, Maeno Y, Macaluso R T and Chan J Y 2007 Phys. Rev. Lett. 99 157203
[25] Myoung B R, Lim J T and Kim C S 2017 J. Magn. Magn. Mater. 438 121
[26] Dalmas de Réotier P, Yaouanc A, MacLaughlin D E, Zhao S, Higo T, Nakatsuji S, Nambu Y, Marin C, Lapertot G, Amato A and Baines C 2012 Phys. Rev. B 85 140407
[27] Li K, Jin S, Guo J, Xu Y, Su Y, Feng E, Liu Y, Zhou S, Ying T, Li S, Wang Z, Chen G and Chen X 2019 Phys. Rev. B 99 054421
[28] Smerald A, Ueda H T and Shannon N 2015 Phys. Rev. B 91 174402
[29] Nambu Y and Nakatsuji S 2011 J. Phys.-Condes. Matter 23 164202
[30] Tomita T, Nambu Y, Nakatsuji S, Koeda S, Hedo M and Uwatoko Y 2009 J. Phys. Soc. Jpn. 78 094603
[31] Takubo K, Mizokawa T, Nambu Y and Nakatsuji S 2009 Phys. Rev. B 79 134422
[32] Nakatsuji S, Nambu Y and Onoda S 2010 J. Phys. Soc. Jpn. 79 011003
[33] Liao C, Jin Y, Zhang W, Zhu Z and Chen M 2020 Chin. Phys. Lett. 37 107505
[34] Pardo M P, Fourcroy P H and Flahaut J 1975 Mater. Res. Bull. 10 665
[35] Bao J K, Li L, Tang Z T, Liu Y, Li Y K, Bai H, Feng C M, Xu Z A and Cao G H 2015 Phys. Rev. B 91 180404
[36] Ramirez A P 1994 Annu. Rev. Mater. Sci. 24 453
[37] Lin M and Hacker H 1968 Solid State Commun. 6 687
[38] Rimet R, Buder R, Schlenker C, Roques R and Zanchetta J 1981 Solid State Commun. 37 693
[39] Heikens H, Wiegers G and van Bruggen C 1977 Solid State Commun. 24 205
[40] Ahmad T, Ramanujachary K V, Lofland S E and Ganguli A K 2004 J. Mater. Chem. 14 3406
[41] Bouvier M, Lethuillier P and Schmitt D 1991 Phys. Rev. B 43 13137
[42] Gratz E, Loewenhaupt M, Divis M, Steiner W, Bauer E, Pillmayr N, Muller H, Nowotny H and Frick B 1991 J. Phys.-Condes. Matter 3 9297
[43] Mezzacapo F and Boninsegni M 2012 Phys. Rev. B 85 060402
[44] Mydosh J A 1993 Spin Glasses: An Experimental Introduction (CRC Press)
[45] Lubchenko V and Wolynes P G 2007 Annu. Rev. Phys. Chem. 58 235
[46] Sahu B, Fobasso R D and Strydom A M 2022 J. Magn. Magn. Mater. 543 168599
[47] Mydosh J A 1996 J. Magn. Magn. Mater. 157-158 606
[48] Krizan J W and Cava R J 2014 Phys. Rev. B 89 214401
[1] Strain-dependent resistance and giant gauge factor in monolayer WSe2
Mao-Sen Qin(秦茂森), Xing-Guo Ye(叶兴国), Peng-Fei Zhu(朱鹏飞), Wen-Zheng Xu(徐文正), Jing Liang(梁晶), Kaihui Liu(刘开辉), and Zhi-Min Liao(廖志敏). Chin. Phys. B, 2021, 30(9): 097203.
[2] Magnetic two-dimensional van der Waals materials forspintronic devices
Yu Zhang(张雨), Hongjun Xu(许洪军), Jiafeng Feng(丰家峰), Hao Wu(吴昊), Guoqiang Yu(于国强), and Xiufeng Han(韩秀峰). Chin. Phys. B, 2021, 30(11): 118504.
[3] Raman scattering study of two-dimensional magnetic van der Waals compound VI3
Yi-Meng Wang(王艺朦), Shang-Jie Tian(田尚杰), Cheng-He Li(李承贺), Feng Jin(金峰), Jian-Ting Ji(籍建葶), He-Chang Lei(雷和畅), Qing-Ming Zhang(张清明). Chin. Phys. B, 2020, 29(5): 056301.
[4] Raman scattering study of magnetic layered MPS3 crystals (M=Mn, Fe, Ni)
Yi-Meng Wang(王艺朦), Jian-Feng Zhang(张建丰), Cheng-He Li(李承贺), Xiao-Li Ma(马肖莉), Jian-Ting Ji(籍建葶), Feng Jin(金峰), He-Chang Lei(雷和畅), Kai Liu(刘凯), Wei-Lu Zhang(张玮璐), Qing-Ming Zhang(张清明). Chin. Phys. B, 2019, 28(5): 056301.
[5] Hubbard model on an anisotropic checkerboard lattice at finite temperatures: Magnetic and metal-insulator transitions
Hai-Di Liu(刘海迪). Chin. Phys. B, 2019, 28(10): 107102.
[6] Raman and mid-infrared spectroscopic study of geometrically frustrated hydroxyl cobalt halides at room temperature
Liu Xiao-Dong(刘晓东), Meng Dong-Dong(孟冬冬), Hagihala Masato(萩原雅人), Zheng Xu-Guang(郑旭光), and Guo Qi-Xin(郭其新) . Chin. Phys. B, 2011, 20(7): 077801.
No Suggested Reading articles found!