CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
The magneto-thermoelectric effect of graphene with intra-valley scattering |
Wenye Duan(段文晔)1,2, Junfeng Liu(刘军丰)3, Chao Zhang(张潮)2, Zhongshui Ma(马中水)1,4 |
1 School of Physics, Peking University, Beijing 100871, China;
2 School of Physics, University of Wollongong, New South Wales 2522, Australia;
3 Department of Physics, South University of Science and Technology of China, Shenzhen 518055, China;
4 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China |
|
|
Abstract We present a qualitative and quantitative study of the magneto-thermoelectric effect of graphene. In the limit of impurity scattering length being much longer than the lattice constant, the intra-valley scattering dominates the charge and thermal transport. The self-energy and the Green's functions are calculated in the self-consistent Born approximation. It is found that the longitudinal thermal conductivity splits into double peaks at high Landau levels and exhibits oscillations which are out of phase with the electric conductivity. The chemical potential-dependent electrical resistivity, the thermal conductivities, the Seebeck coefficient, and the Nernst coefficient are obtained. The results are in good agreement with the experimental observations.
|
Received: 12 May 2018
Revised: 25 June 2018
Accepted manuscript online:
|
PACS:
|
72.80.Vp
|
(Electronic transport in graphene)
|
|
72.15.Jf
|
(Thermoelectric and thermomagnetic effects)
|
|
73.50.Lw
|
(Thermoelectric effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274013 and 11774006), the National Basic Research Program of China (2012CB921300), and the Australian Research Council Grant (Grant No. DP160101474). |
Corresponding Authors:
Wenye Duan
E-mail: duanwy@pku.edu.cn
|
Cite this article:
Wenye Duan(段文晔), Junfeng Liu(刘军丰), Chao Zhang(张潮), Zhongshui Ma(马中水) The magneto-thermoelectric effect of graphene with intra-valley scattering 2018 Chin. Phys. B 27 097204
|
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[2] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Dubonos S V, Grigorieva I V and Firsov A A 2005 Nature 438 197
|
[3] |
Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620
|
[4] |
Neto A H C, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
|
[5] |
Sarma S D, Adam S, Hwang E H and Rossi E 2011 Rev. Mod. Phys. 83 407
|
[6] |
Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
|
[7] |
Zhang Y 2006 Phys. Rev. Lett. 96 136806
|
[8] |
Zhang Z, Zhang Y, Stormer H L and Kim P 2007 Phys. Rev. Lett. 99 106802
|
[9] |
Abanin D A, Novoselov K S, Zeilter U, Lee P A, Geim A K and Levitov L S 2007 Phys. Rev. Lett. 98 196806
|
[10] |
Checkelsky J G, Li L and Ong N P 2008 Phys. Rev. Lett. 100 206801
|
[11] |
Checkelsky J G, Li L and Ong N P 2009 Phys. Rev. B 79 115434
|
[12] |
Giesbers A J M 2009 Phys. Rev. B 80 201403(R)
|
[13] |
Bolotin K I, Ghahari F, Shulman M D, Stormer H L and Kim P 2009 Nature 462 196
|
[14] |
Du X, Skachko I, Duerr F, Luican A and Andrei E Y 2009 Nature 462 192
|
[15] |
Wei P, Bao W, Pu Y, Lau C N and Shi J 2009 Phys. Rev. Lett. 102 166808
|
[16] |
Zuev Y M, Chang W and Kim P 2009 Phys. Rev. Lett. 102 096807
|
[17] |
Checkelsky J G and Ong N P 2009 Phys. Rev. B 80 081413(R)
|
[18] |
Liu X, Wang D, Wei P, Zhu L and Shi J 2012 Phys. Rev. B 86 155414
|
[19] |
Nam Y, Sun J, Lindvall N, Yang S J, Park C R, Park Y W and Yurgens A 2014 Appl. Phys. Lett. 104 021902
|
[20] |
Wang D and Shi J 2011 Phys. Rev. B 83 113403
|
[21] |
Ghahari F, Xie H-Y, Taniguchi T, Watanabe K, Foster M S and Kim P 2016 Phys. Rev. Lett. 116 136802
|
[22] |
Xu Y, Li Z and Duan W 2014 Small 10 2182
|
[23] |
Sadeghi H, Sangtarash S and Lambert C J 2015 Beilstein J. Nanotechnol. 6 1176
|
[24] |
Zheng H, Liu H J, Tan X J, Lv H Y, Pan L, Shi J and Tang X F 2012 Appl. Phys. Lett. 100 093104
|
[25] |
Olaya D, Morales M H, Gómez D, Uribe O A C, Juang Z Y and Hernández Y 2018 2D Mater. 5 011004
|
[26] |
Yadav S, Chaudhary S and Pandya D K 2018 Ceram. Int. 44 10628
|
[27] |
Cheng X and Sun G Y 2017 Physica E 87 84
|
[28] |
Nguyen M C, Nguyen V H, Nguyen H V, Martin J S and Dollfus P 2015 Physica E 73 207
|
[29] |
Vishkayi S I and Soleimani H R 2015 Physica E 74 363
|
[30] |
Patil U and Muralidharan B 2017 Physica E 85 27
|
[31] |
D'Souza R and Mukherjee S 2016 Physica E 81 96
|
[32] |
Rodriguez S T, Grosu I, Crisan M and Tifrea I 2018 Physica E 96 1
|
[33] |
Valdovinos S M, Rivera J M, Cabrera N E M and Vargas I R 2018 Physica E 101 188
|
[34] |
Tran V-T, Martin J S, Dollfus P and Volz S 2017 Sci Rep 7 2313
|
[35] |
Anno Y, Imakita Y, Takei K, Akita S and Arie T 2017 2D Mater. 4 025019
|
[36] |
Zberecki K, Swikowicz R, Wierzbicki M and Barnas J 2016 Phys. Chem. Chem. Phys. 18 18246
|
[37] |
Kolesnikov D V, Lobanov D A and Osipov V A 2016 Solid State Common. 248 83
|
[38] |
Kim J Y and Grossman J C 2015 Nano Lett. 15 2830
|
[39] |
Nam S G, Ki D K and Lee H J 2010 Phys. Rev. B 82 245416
|
[40] |
Wang C R, Lu W S and Lee W L 2010 Phys. Rev. B 82 121406
|
[41] |
Zhu Z W, Yang H, Fauqu B, Kopelevich Y and Behnia K 2010 Nat. Phys. 6 26
|
[42] |
Gusynin V P and Sharapov S G 2005 Phys. Rev. B 71 125124
|
[43] |
Dóra B and Thalmeier P 2007 Phys. Rev. B 76 035402
|
[44] |
Zhu L, Ma R, Sheng L, Liu M and Sheng D N 2010 Phys. Rev. Lett. 104 076804
|
[45] |
Chao S P and Aji V 2011 Phys. Rev. B 84 155430
|
[46] |
Ugarte V, Aji V and Varma C M 2011 Phys. Rev. B 84 165429
|
[47] |
Nasir R and Sabeeh K 2011 J. Phys:Condens. Matter 23 375301
|
[48] |
Proskurin I and Ogata M 2013 J. Phys. Soc. Jpn. 82 063712
|
[49] |
Xing Y, Sun Q F and Wang J 2009 Phys. Rev. B 80 235411
|
[50] |
Wei M M, Zhang Y T, Guo A M, Liu J J, Xing Y and Sun Q F 2016 Phys. Rev. B 93 245432
|
[51] |
Saito K, Nakamura J and Natori A 2007 Phys. Rev. B 76 115409
|
[52] |
Yiǧen S and Champagne A R 2014 Nano Lett. 14 289
|
[53] |
Crossno J 2016 Science 351 1058
|
[54] |
Ajiki H and Ando T 1993 J. Phys. Soc. Jpn. 62 1255
|
[55] |
Ajiki H and Ando T 1996 J. Phys. Soc. Jpn. 65 505
|
[56] |
Ando T and Nakanishi T 1998 J. Phys. Soc. Jpn. 67 1704
|
[57] |
Ando T 2000 Semicond. Sci. Technol. 15 R13
|
[58] |
Ando T 2005 J. Phys. Soc. Jpn. 74 777
|
[59] |
Shon N H and Ando T 1998 J. Phys. Soc. Jpn. 67 2421
|
[60] |
Zheng Y and Ando T 2002 Phys. Rev. B 65 245420
|
[61] |
Smreka L and Strěda P 1977 J. Phys.:Solide State Phys. C 10 2153
|
[62] |
Luttinger J M 1964 Phys. Rev. 135 A1505
|
[63] |
Jonson M and Girvin S M 1984 Phys. Rev. B 29 1939
|
[64] |
Strěda P 1983 J. Phys. C 16 L369
|
[65] |
Oji H and Strěda P 1985 Phys. Rev. B 31 7291
|
[66] |
Vining C B 2009 Nat. Mater. 8 83
|
[67] |
Tritt T M 2011 Annu. Rev. Mater. Res. 41 433
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|