Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 097204    DOI: 10.1088/1674-1056/27/9/097204
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The magneto-thermoelectric effect of graphene with intra-valley scattering

Wenye Duan(段文晔)1,2, Junfeng Liu(刘军丰)3, Chao Zhang(张潮)2, Zhongshui Ma(马中水)1,4
1 School of Physics, Peking University, Beijing 100871, China;
2 School of Physics, University of Wollongong, New South Wales 2522, Australia;
3 Department of Physics, South University of Science and Technology of China, Shenzhen 518055, China;
4 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
Abstract  

We present a qualitative and quantitative study of the magneto-thermoelectric effect of graphene. In the limit of impurity scattering length being much longer than the lattice constant, the intra-valley scattering dominates the charge and thermal transport. The self-energy and the Green's functions are calculated in the self-consistent Born approximation. It is found that the longitudinal thermal conductivity splits into double peaks at high Landau levels and exhibits oscillations which are out of phase with the electric conductivity. The chemical potential-dependent electrical resistivity, the thermal conductivities, the Seebeck coefficient, and the Nernst coefficient are obtained. The results are in good agreement with the experimental observations.

Keywords:  graphene      thermoelectric transport      thermal transport  
Received:  12 May 2018      Revised:  25 June 2018      Accepted manuscript online: 
PACS:  72.80.Vp (Electronic transport in graphene)  
  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  73.50.Lw (Thermoelectric effects)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11274013 and 11774006), the National Basic Research Program of China (2012CB921300), and the Australian Research Council Grant (Grant No. DP160101474).

Corresponding Authors:  Wenye Duan     E-mail:  duanwy@pku.edu.cn

Cite this article: 

Wenye Duan(段文晔), Junfeng Liu(刘军丰), Chao Zhang(张潮), Zhongshui Ma(马中水) The magneto-thermoelectric effect of graphene with intra-valley scattering 2018 Chin. Phys. B 27 097204

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Dubonos S V, Grigorieva I V and Firsov A A 2005 Nature 438 197
[3] Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620
[4] Neto A H C, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[5] Sarma S D, Adam S, Hwang E H and Rossi E 2011 Rev. Mod. Phys. 83 407
[6] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[7] Zhang Y 2006 Phys. Rev. Lett. 96 136806
[8] Zhang Z, Zhang Y, Stormer H L and Kim P 2007 Phys. Rev. Lett. 99 106802
[9] Abanin D A, Novoselov K S, Zeilter U, Lee P A, Geim A K and Levitov L S 2007 Phys. Rev. Lett. 98 196806
[10] Checkelsky J G, Li L and Ong N P 2008 Phys. Rev. Lett. 100 206801
[11] Checkelsky J G, Li L and Ong N P 2009 Phys. Rev. B 79 115434
[12] Giesbers A J M 2009 Phys. Rev. B 80 201403(R)
[13] Bolotin K I, Ghahari F, Shulman M D, Stormer H L and Kim P 2009 Nature 462 196
[14] Du X, Skachko I, Duerr F, Luican A and Andrei E Y 2009 Nature 462 192
[15] Wei P, Bao W, Pu Y, Lau C N and Shi J 2009 Phys. Rev. Lett. 102 166808
[16] Zuev Y M, Chang W and Kim P 2009 Phys. Rev. Lett. 102 096807
[17] Checkelsky J G and Ong N P 2009 Phys. Rev. B 80 081413(R)
[18] Liu X, Wang D, Wei P, Zhu L and Shi J 2012 Phys. Rev. B 86 155414
[19] Nam Y, Sun J, Lindvall N, Yang S J, Park C R, Park Y W and Yurgens A 2014 Appl. Phys. Lett. 104 021902
[20] Wang D and Shi J 2011 Phys. Rev. B 83 113403
[21] Ghahari F, Xie H-Y, Taniguchi T, Watanabe K, Foster M S and Kim P 2016 Phys. Rev. Lett. 116 136802
[22] Xu Y, Li Z and Duan W 2014 Small 10 2182
[23] Sadeghi H, Sangtarash S and Lambert C J 2015 Beilstein J. Nanotechnol. 6 1176
[24] Zheng H, Liu H J, Tan X J, Lv H Y, Pan L, Shi J and Tang X F 2012 Appl. Phys. Lett. 100 093104
[25] Olaya D, Morales M H, Gómez D, Uribe O A C, Juang Z Y and Hernández Y 2018 2D Mater. 5 011004
[26] Yadav S, Chaudhary S and Pandya D K 2018 Ceram. Int. 44 10628
[27] Cheng X and Sun G Y 2017 Physica E 87 84
[28] Nguyen M C, Nguyen V H, Nguyen H V, Martin J S and Dollfus P 2015 Physica E 73 207
[29] Vishkayi S I and Soleimani H R 2015 Physica E 74 363
[30] Patil U and Muralidharan B 2017 Physica E 85 27
[31] D'Souza R and Mukherjee S 2016 Physica E 81 96
[32] Rodriguez S T, Grosu I, Crisan M and Tifrea I 2018 Physica E 96 1
[33] Valdovinos S M, Rivera J M, Cabrera N E M and Vargas I R 2018 Physica E 101 188
[34] Tran V-T, Martin J S, Dollfus P and Volz S 2017 Sci Rep 7 2313
[35] Anno Y, Imakita Y, Takei K, Akita S and Arie T 2017 2D Mater. 4 025019
[36] Zberecki K, Swikowicz R, Wierzbicki M and Barnas J 2016 Phys. Chem. Chem. Phys. 18 18246
[37] Kolesnikov D V, Lobanov D A and Osipov V A 2016 Solid State Common. 248 83
[38] Kim J Y and Grossman J C 2015 Nano Lett. 15 2830
[39] Nam S G, Ki D K and Lee H J 2010 Phys. Rev. B 82 245416
[40] Wang C R, Lu W S and Lee W L 2010 Phys. Rev. B 82 121406
[41] Zhu Z W, Yang H, Fauqu B, Kopelevich Y and Behnia K 2010 Nat. Phys. 6 26
[42] Gusynin V P and Sharapov S G 2005 Phys. Rev. B 71 125124
[43] Dóra B and Thalmeier P 2007 Phys. Rev. B 76 035402
[44] Zhu L, Ma R, Sheng L, Liu M and Sheng D N 2010 Phys. Rev. Lett. 104 076804
[45] Chao S P and Aji V 2011 Phys. Rev. B 84 155430
[46] Ugarte V, Aji V and Varma C M 2011 Phys. Rev. B 84 165429
[47] Nasir R and Sabeeh K 2011 J. Phys:Condens. Matter 23 375301
[48] Proskurin I and Ogata M 2013 J. Phys. Soc. Jpn. 82 063712
[49] Xing Y, Sun Q F and Wang J 2009 Phys. Rev. B 80 235411
[50] Wei M M, Zhang Y T, Guo A M, Liu J J, Xing Y and Sun Q F 2016 Phys. Rev. B 93 245432
[51] Saito K, Nakamura J and Natori A 2007 Phys. Rev. B 76 115409
[52] Yiǧen S and Champagne A R 2014 Nano Lett. 14 289
[53] Crossno J 2016 Science 351 1058
[54] Ajiki H and Ando T 1993 J. Phys. Soc. Jpn. 62 1255
[55] Ajiki H and Ando T 1996 J. Phys. Soc. Jpn. 65 505
[56] Ando T and Nakanishi T 1998 J. Phys. Soc. Jpn. 67 1704
[57] Ando T 2000 Semicond. Sci. Technol. 15 R13
[58] Ando T 2005 J. Phys. Soc. Jpn. 74 777
[59] Shon N H and Ando T 1998 J. Phys. Soc. Jpn. 67 2421
[60] Zheng Y and Ando T 2002 Phys. Rev. B 65 245420
[61] Smreka L and Strěda P 1977 J. Phys.:Solide State Phys. C 10 2153
[62] Luttinger J M 1964 Phys. Rev. 135 A1505
[63] Jonson M and Girvin S M 1984 Phys. Rev. B 29 1939
[64] Strěda P 1983 J. Phys. C 16 L369
[65] Oji H and Strěda P 1985 Phys. Rev. B 31 7291
[66] Vining C B 2009 Nat. Mater. 8 83
[67] Tritt T M 2011 Annu. Rev. Mater. Res. 41 433
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[7] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[8] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[9] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[10] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[11] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[12] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[13] Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x
Hanpu Liang(梁汉普) and Yifeng Duan(段益峰). Chin. Phys. B, 2022, 31(7): 076301.
[14] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[15] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
No Suggested Reading articles found!