Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 097301    DOI: 10.1088/1674-1056/27/9/097301
Special Issue: SPECIAL TOPIC — Nanophotonics
SPECIAL TOPIC—Nanophotonics Prev   Next  

Selective enhancement of green upconversion luminescence of Er-Yb: NaYF4 by surface plasmon resonance of W18O49 nanoflowers and applications in temperature sensing

Ang Li(李昂)1,2,3, Jin-Lei Wu(吴金磊)2,3, Xue-Song Xu(许雪松)1,2, Yang Liu(刘洋)3, Ya-Nan Bao(包亚男)2,3, Bin Dong(董斌)3
1 School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China;
2 Department of Physics, Dalian Maritime University, Dalian 116026, China;
3 Key Laboratory of Photosensitive Materials and Device of Liaoning Province, Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China
Abstract  

The W18O49 nanoflowers with a diameter of 500 nm are prepared by a facile hydrothermal method. The Er-Yb:NaYF4 nanoparticles are adsorbed on the petals (the position of the strongest local electric field on W18O49 nanoflowers). With a 976 nm laser diode (LD) as an excitation source, the selectively green upconversion luminescence (UCL) is observed to be enhanced by two orders of magnitude in Er-Yb:NaYF4/W18O49 nanoflowers heterostructures. It suggests that the near infrared (NIR)-excited localized surface plasmon resonance (LSPR) of W18O49 is primarily responsible for the enhanced UCL, which could be partly reabsorbed by the W18O49, thus leading to the selective enhancement of green UCL for the Er-Yb:NaYF4. The fluorescence intensity ratio is investigated as a function of temperature based on the intense green UCL, which indicates that Er-Yb:NaYF4/W18O49 nanoflower heterostructures have good potential for developing into temperature sensors.

Keywords:  upconversion      localized surface plasmon resonance      Er-Yb:NaYF4/W18O49      temperature sensing  
Received:  11 May 2018      Revised:  05 July 2018      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.68.+m (Optical properties of surfaces)  
  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  68.55.-a (Thin film structure and morphology)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11474046 and 61775024), the Program for Liaoning Innovation Team in University, China (Grant No. LT2016011), the Science and Technique Foundation of Dalian, China (Grant Nos. 2017RD12 and 2015J12JH201), and the Fundamental Research Funds for the Central Universities, China (Grant No. DC201502080203).

Corresponding Authors:  Bin Dong     E-mail:  dong@dlnu.edu.cn

Cite this article: 

Ang Li(李昂), Jin-Lei Wu(吴金磊), Xue-Song Xu(许雪松), Yang Liu(刘洋), Ya-Nan Bao(包亚男), Bin Dong(董斌) Selective enhancement of green upconversion luminescence of Er-Yb: NaYF4 by surface plasmon resonance of W18O49 nanoflowers and applications in temperature sensing 2018 Chin. Phys. B 27 097301

[1] Liu Q, Li F, Shen Z, Yang T, Yang Y, Yao P and Yin B 2013 J. Am. Chem. Soc. 135 5029
[2] Yin Z, Li H, Xu W, Cui S, Zhou D, Chen X, Zhu Y, Qin G and Song H 2016 Adv. Mater. 28 2518
[3] Dong B, Cao B, He Y, Liu Z, Li Z and Feng Z 2012 Adv. Mater. 24 1987
[4] Wei T, Dong Z, Zhao C Z, Ma Y J, Zhang T B, Xie Y F, Zhou Q J and Li Z P 2016 Ceram. Int. 42 5537
[5] He E J, Liu N, Zhang M L, Qin Y F, Guan B G, Li Y and Guo M L 2012 Chin. Phys. B 21 073201
[6] Gao W and Dong J 2017 Acta Phys. Sin. 66 204206 (in Chinese)
[7] Yang Y X, Xu Z, Zhao S L, Liang Z Q, Zhu W and Zhang J J 2017 Chin. Phys. B 26 087801
[8] Generalova A N, Rocheva V V, Nechaev A V, Khochenkov D A, Sholina N V, Semchishen V A, Zubov V P, Koroleva A V, Chichkov B N and Khaydukov E V 2016 Rsc. Adv. 6 30089
[9] Li Z H, Park W, Zorzetto G, Lemaire J S and Summers C J 2014 Chem. Mater. 26 1770
[10] Wang J, Song H, Xu W, Dong B, Xu S, Chen B, Yu W and Zhang S 2013 Nanoscale 5 3412
[11] Cao B S, Wu J L, Feng Z Q and Dong B 2013 Mater. Chem. Phys. 142 333
[12] Marciniak L, Bednarkiewicz A, Stefanski M, Tomala R, Hreniak D and Strek W 2016 J. Mater. Chem. C 4 2513
[13] Wang F, Han Y, Lim C S, Lu Y, Wang J, Xu J, Chen H, Zhang C, Hong M and Liu X 2010 Nature 463 1061
[14] Cao B S, Wu J L, Wang X H, Feng Z Q and Dong B 2016 J. Nanosci. Nanotechnol. 16 3690
[15] Greybush N J, Saboktakin M, Ye X, Della G C, Oh S J, Berry N E, Engheta N, Murray C B and Kagan C R 2014 ACS Nano 8 9482
[16] Yin Z, Zhou D, Xu W, Cui S, Chen X, Wang H, Xu S and Song H 2016 ACS. Appl. Mater. Inter. 8 11667
[17] Hartl G V 2011 Chem. Rev. 111 3858
[18] Olson J, Dominguezmedina S, Hoggard A, Wang L Y, Chang W S and Link S 2015 Chem. Soc. Rev. 44 40
[19] Schuller J A, Barnard E S, Cai W, Jun Y C, White J S and Brongersma M L 2010 Nat. Mater. 9 193
[20] Kanehara M, Koike H, Yoshinaga T and Teranishi T 2009 J. Am. Chem. Soc. 131 17736
[21] Zhang Z Y, Jiang X Y, Liu B K, Guo L J, Lu N, Wang L, Huang J D, Liu K C and Dong B 2018 Adv. Mater. 30 1705221
[22] Mocatta D, Cohen G, Schattner J, Millo O, Rabani E and Banin U 2011 Science 332 77
[23] Cheng H, Kamegawa T, Mori K and Yamashita H 2014 Angew. Chem. Int. Edit. 53 2910
[24] Chen Y, Liu X C, Chen W D, Xie Z W, Huang Y R and Li L 2017 Chin. Phys. B 26 017807
[25] Zhang Z Y, Huang J D, Fang Y R, Zhang M Y, Liu K C and Dong B 2017 Adv. Mater. 29 1606688
[26] Pollnau M, Gamelin D R, Uuml S R, Uuml T U and Hehlen M P 2000 Phys. Rev. B 61 3337
[1] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[2] Near-infrared photocatalysis based on upconversion nanomaterials
Xingyuan Guo(郭星原), Zhe Wang(王哲), Shengyan Yin(尹升燕), and Weiping Qin(秦伟平). Chin. Phys. B, 2022, 31(10): 108201.
[3] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[4] Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube
Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳). Chin. Phys. B, 2021, 30(11): 114207.
[5] Controlled plasmon-enhanced fluorescence by spherical microcavity
Jingyi Zhao(赵静怡), Weidong Zhang(张威东), Te Wen(温特), Lulu Ye(叶璐璐), Hai Lin(林海), Jinglin Tang(唐靖霖), Qihuang Gong(龚旗煌), and Guowei Lyu(吕国伟). Chin. Phys. B, 2021, 30(11): 114215.
[6] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[7] Effect of system-reservoir correlations on temperature estimation
Wen-Li Zhu(朱雯丽), Wei Wu(吴威), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(2): 020501.
[8] Linear polarization output performance of Nd: YAG laser at 946 nm considering the energy-transfer upconversion
Jin-Xia Feng(冯晋霞), Yuan-Ji Li(李渊骥), Kuan-Shou Zhang(张宽收). Chin. Phys. B, 2018, 27(7): 074211.
[9] Subwavelength asymmetric Au-VO2 nanodisk dimer for switchable directional scattering
Han-Mou Zhang(张汉谋), Wu-Yun Shang(尚武云), Hua Lu(陆华), Fa-Jun Xiao(肖发俊), Jian-Lin Zhao(赵建林). Chin. Phys. B, 2018, 27(11): 117301.
[10] Effect of Hf4+ doping on structure and enhancement of upconversion luminescence in Yb: Tm: LiNbO3 crystals
Li Dai(代丽), Chunrui Liu(刘春蕊), Xianbo Han(韩县博), Luping Wang(王路平), Yu Shao(邵瑀), Yuheng Xu(徐玉恒). Chin. Phys. B, 2018, 27(11): 114217.
[11] Ultrasensitive nanosensors based on localized surface plasmon resonances: From theory to applications
Wen Chen(陈文), Huatian Hu(胡华天), Wei Jiang(姜巍), Yuhao Xu(徐宇浩), Shunping Zhang(张顺平), Hongxing Xu(徐红星). Chin. Phys. B, 2018, 27(10): 107403.
[12] Optical interaction between one-dimensional fiber photonic crystal microcavity and gold nanorod
Yang Yu(于洋), Ting-Hui Xiao(肖廷辉), Zhi-Yuan Li(李志远). Chin. Phys. B, 2018, 27(1): 017301.
[13] Shape controllable synthesis and enhanced upconversion photoluminescence of β-NaGdF4:Yb3+, Er3+ nanocrystals by introducing Mg2+
Yong-Xin Yang(杨永馨), Zheng Xu(徐征), Su-Ling Zhao(赵谡玲), Zhi-Qin Liang(梁志琴), Wei Zhu(朱薇), Jun-Jie Zhang(张俊杰). Chin. Phys. B, 2017, 26(8): 087801.
[14] Effects of thickness & shape on localized surface plasmon resonance of sexfoil nanoparticles
Yan Chen(陈艳), Xianchao Liu(刘贤超), Weidong Chen(陈卫东), Zhengwei Xie(谢征微), Yuerong Huang(黄跃容), Ling Li(李玲). Chin. Phys. B, 2017, 26(1): 017807.
[15] Tunable multiple plasmon resonances and local field enhancement of nanocrescent/nanoring structure
Wang Bin-Bing (王彬兵), Zhou Jun (周骏), Chen Dong (陈栋), Fang Yun-Tuan (方云团), Chen Ming-Yang (陈明阳). Chin. Phys. B, 2015, 24(8): 087301.
No Suggested Reading articles found!