Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 094216    DOI: 10.1088/1674-1056/27/9/094216
Special Issue: TOPICAL REVIEW — Nanophotonics
TOPICAL REVIEW—Nanophotonics Prev   Next  

Surface plasmon polariton waveguides with subwavelength confinement

Longkun Yang(杨龙坤)1, Pan Li(李盼)1, Hancong Wang(汪涵聪)2, Zhipeng Li(李志鹏)1
1 The Beijing Key Laboratory for Nano-Photonics and Nano-Structure(NPNS), Center for Condensed Matter Physics, Department of Physics, Capital Normal University, Beijing 100048, China;
2 The Fujian Provincial Key Laboratory of Automotive Electronics and Electric Drive, School of Information Science and Engineering, Fujian University of Technology, Fuzhou 350108, China

Surface plasmon polaritons (SPPs) are evanescent waves propagating along metal-dielectric interfaces, which provide an effective way to realize optical wave guiding with subwavelength confinement. Metallic nanostructures supporting SPPs, that is, plasmonic waveguides, are considered as required components to construct nanophotonic devices and circuits with a high degree of miniaturization and integration. In this paper, various types of plasmonic waveguides operating in the visible, infrared, and terahertz regions are reviewed, and the status of the research on their fundamentals, fabrications, and applications is provided as well. First, we discuss the mechanisms of SPPs beyond the diffraction limit, and their launching methods. Then, the characteristics of SPPs on various plasmonic waveguides are reviewed, including top-down and bottom-up fabricated types. Considering applications, certain prototypes of plasmonic devices and circuits constructed by plasmonic waveguides for bio/chemo sensing, router, and light modulation are demonstrated. Finally, a summary and future outlook of plasmonic waveguides are given.

Keywords:  waveguides      surface plasmon polaritons      dispersion relations      nanowires  
Received:  22 May 2018      Revised:  28 August 2018      Accepted manuscript online: 
PACS:  42.79.Gn (Optical waveguides and couplers)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  11.55.Fv (Dispersion relations)  
  78.67.Uh (Nanowires)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 11704266 and 11774245), the Fok Ying Tung Education Foundation, China (Grant No. 151010), the Scientific Research Base Development Program of Beijing Municipal Commission of Education, China, the General Foundation of Beijing Municipal Commission of Education, China (Grant No. KM201810028006), and the Training Program of the Major Research Plan of Capital Normal University, China.

Corresponding Authors:  Zhipeng Li     E-mail:

Cite this article: 

Longkun Yang(杨龙坤), Pan Li(李盼), Hancong Wang(汪涵聪), Zhipeng Li(李志鹏) Surface plasmon polariton waveguides with subwavelength confinement 2018 Chin. Phys. B 27 094216

[1] Mekis A, Chen J, Kurl, I, Fan S H, Villeneuve P and Joannopoulos J 1996 Phys. Rev. Lett. 77 3787
[2] Xia F, Sekaric L and Vlasov Y 2007 Nat. Photon. 1 65
[3] Koos C, Vorreau P, Vallaitis T, Dumon P, Bogaerts W, Baets R, Esembeson B, Biaggio I, Michinobu T, Diederich F, Freude W and Leuthold J 2009 Nat. Photon. 3 216
[4] Frandsen L, Borel P, Zhuang Y, Harpoth A, Thorhauge M, Kristensen M, Bogaerts W, Dumon P and Baets R 2004 Opt. Lett. 29 1623
[5] Foster M A, Turner A C, Sharping J E, Schmidt B S, Lipson M and Gaeta A L 2006 Nature 441 960
[6] Born M and Wolf E 2013 Principles of Optics:Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier)
[7] Ozbay E 2006 Science 311 189
[8] Gramotnev D and Bozhevolnyi S 2010 Nat. Photon. 4 83
[9] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[10] Maier S A 2007 Plasmonics:Fundamentals and Applications (Springer)
[11] Li Z, Shegai T, Haran G and Xu H 2009 ACS Nano 3 637
[12] Chuntonov L and Haran G 2011 Nano Lett. 11 2440
[13] Chuntonov L and Haran G 2011 J. Phys. Chem. C 115 19488
[14] Wang H, Li Z, Zhang H, Wang P and Wen S 2015 Sci. Rep. 5 8207
[15] Yang L, Wang H, Fang Y and Li Z 2016 ACS Nano 10 1580
[16] Xu H, Wang X, Persson M, Xu H, Käll M and Johansson P 2004 Phys. Rev. Lett. 93 243002
[17] Shegai T, Li Z, Dadosh T, Zhang Z, Xu H and Haran G 2008 Proc. Natl. Acad. Sci. USA 105 16448
[18] Chuntonov L and Haran G 2013 Nano Lett. 13 1285
[19] Haran G 2010 Acc. Chem. Res. 43 1135
[20] Barnes W L, Murray W A, Dintinger J, Devaux E and Ebbesen T 2004 Phys. Rev. Lett. 92 107401
[21] Wei H, Pan D, Zhang S, Li Z, Li Q, Liu N, Wang W and Xu H 2018 Chem. Rev. 118 2882
[22] Guo X, Qiu M, Bao J, Wiley B J, Yang Q, Zhang X, Ma Y, Yu H and Tong L 2009 Nano Lett. 9 4515
[23] Guo X, Ma Y, Wang Y and Tong L 2013 Laser Photon. Rev. 7 855
[24] Lal S, Hafner J H, Halas N J, Link S and Nordlander P 2012 Acc. Chem. Res. 45 1887
[25] Huang T, Wang J, Li Z, Liu W, Lin F, Fang Z and Zhu X 2016 Chin. Phys. B 25 087302
[26] Yang C, Zhao H, Wang P, Li J, Tang P, Qu S, Lin F and Zhu X 2014 Chin. Phys. B 23 117302
[27] Li Q, Wei H and Xu H 2014 Chin. Phys. B 23 097302
[28] Wang Y, Zhang L, Mei J, Zhang W and Tong Y 2015 Chin. Phys. B 24 127302
[29] Li Q, Pan D, Wei H and Xu H 2018 Nano Lett. 18 2009
[30] Li Q, Wei H and Xu H 2014 Nano Lett. 14 3358
[31] Barnes W 2006 J. Opt. A:Pure Appl. Opt. 8 S87
[32] Zia R, Selker M and Brongersma M 2005 Phys. Rev. B 71 165431
[33] Ropers C, Neacsu C, Elsaesser T, Albrecht M, Raschke M and Lienau C 2007 Nano Lett. 7 2784
[34] Knight M W, Grady N K, Bardhan R, Hao F, Nordlander P and Halas N J 2007 Nano Lett. 7 2346
[35] Fang Z, Lu Y, Fan L, Lin C and Zhu X 2010 Plasmonics 5 57
[36] Fang Z, Fan L, Lin C, Zhang D, Meixner A J and Zhu X 2011 Nano Lett. 11 1676
[37] Fang Z, Huang S, Zhu X and Fan L 2010 J. Korean Phys. Soc. 56 1725
[38] Li Z, Hao F, Huang Y, Fang Y, Nordlander P and Xu H 2009 Nano Lett. 9 4383
[39] Wang W, Yang Q, Fan F, Xu H and Wang Z L 2011 Nano Lett. 11 1603
[40] Li M, Zou C L, Ren X F, Xiong X, Cai Y J, Guo G P, Tong L M and Guo G C 2015 Nano Lett. 15 2380
[41] Cai W, Sainidou R, Xu J, Polman A and Javier Garcia de Abajo F 2009 Nano Lett. 9 1176
[42] Vieu C, Carcenac F, Pepin A, Chen Y, Mejias M, Lebib A, Manin-Ferlazzo L, Couraud L and Launois H 2000 Appl. Sur. Sci. 164 111
[43] Tseng A, Chen K, Chen C and Ma K 2003 IEEE Trans. Electron. Packag. Manuf. 26 141
[44] Giannuzzi L A 2004 Introduction to Focused Ion Beams:Instrumentation, Theory, Techniques and Practice (Springer)
[45] Huang J, Callegari V, Geisler P, Brüning C, Kern J, Prangsma J, Wu X, Feichtner T, Ziegler J and Weinmann P 2010 Nat. Commun. 1 150
[46] Duan H, Fernández-Domínguez A I, Bosman M, Maier S A and Yang J 2012 Nano Lett. 12 1683
[47] Manfrinato V R, Zhang L, Su D, Duan H, Hobbs R G, Stach E A and Berggren K K 2013 Nano Lett. 13 1555
[48] Berini P 1999 Opt. Lett. 24 1011
[49] Lamprecht B, Krenn J, Schider G, Ditlbacher H, Salerno M, Félidj N, Leitner A, Aussenegg F and Weeber J 2001 Appl. Phys. Lett. 79 51
[50] Krenn J R, Lamprecht B, Ditlbacher H, Schider G, Leitner A and Aussenegg F 2002 Europhys. Lett. 60 663
[51] Zia R, Schuller J and Brongersma M 2006 Phys. Rev. B 74 165415
[52] Weeber J, Krenn J, Dereux A, Lamprecht B, Lacroute Y and Goudonnet J 2001 Phys. Rev. B 64 045411
[53] Weeber J, Lacroute Y and Dereux A 2003 Phys. Rev. B 68 115401
[54] Smith C, Stenger N, Kristensen A, Mortensen N A and Bozhevolnyi S I 2015 Nanoscale 7 9355
[55] Novikov I and Maradudin A 2002 Phys. Rev. B 66 035403
[56] Bozhevolnyi S, Volkov V, Devaux E, Laluet J and Ebbesen T 2007 Appl. Phys. A 89 225
[57] Bozhevolnyi S I, Volkov V S, Devaux E and Ebbesen T W 2005 Phys. Rev. Lett. 95 046802
[58] Bozhevolnyi S and Nerkararyan K 2010 Opt. Lett. 35 541
[59] Zenin V, Volkov V, Han Z, Bozhevolnyi S, Devaux E and Ebbesen T 2011 J. Opt. Soc. Am. B 28 1596
[60] Moreno E, Garcia-Vidal F, Rodrigo S, Martin-Moreno L and Bozhevolnyi S 2006 Opt. Lett. 31 3447
[61] Pile D and Gramotnev D 2005 Opt. Lett. 30 1186
[62] Volkov V S, Bozhevolnyi S I, Devaux E and Ebbesen T W 2006 Appl. Phys. Lett. 89 143108
[63] Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y and Ebbesen T W 2006 Nature 440 508
[64] Volkov V S, Bozhevolnyi S I, Devaux E, Laluet J Y and Ebbesen T W 2007 Nano Lett. 7 880
[65] Smith C, Desiatov B, Goykmann I, Fernandez-Cuesta I, Levy U and Kristensen A 2012 Opt. Express 20 5696
[66] Pendry J, Martin-Moreno L and Garcia-Vidal F 2004 Science 305 847
[67] Hibbins A P, Evans B R and Sambles J R 2005 Science 308 670
[68] Maier S A, Andrews S R, Martin-Moreno L and Garcia-Vidal F 2006 Phys. Rev. Lett. 97 176805
[69] Fernández-Domínguez A, Moreno E, Martin-Moreno L and Garcia-Vidal F 2009 Phys. Rev. B 79 233104
[70] Martin-Cano D, Nesterov M, Fernandez-Dominguez A, Garcia-Vidal F, Martin-Moreno L and Moreno E 2010 Opt. Express 18 754
[71] Shen X, Cui T, Martin-Cano D and Garcia-Vidal F 2013 Proc. Natl. Acad. Sci. USA 110 40
[72] Shen X and Cui T 2013 Appl. Phys. Lett. 102 211909
[73] Shen X and Cui T 2014 Laser Photon. Rev. 8 137
[74] Ma H, Shen X, Cheng Q, Jiang W and Cui T 2014 Laser Photon. Rev. 8 146
[75] Zhang Q, Zhang H, Wu H and Cui T 2015 Sci. Rep. 5 16531
[76] Gao X, Shi J, Shen X, Hui F, Wei X, Li L and Cui T 2013 Appl. Phys. Lett. 102 151912
[77] Xu J, Yin J, Zhang H and Cui T 2016 Sci. Rep. 6 22692
[78] Zhang H, Liu S, Shen X, Chen L, Li L and Cui T 2015 Laser Photon. Rev. 9 83
[79] Faraday M 1857 Philos. Trans. R. Soc. Lond. 147 145
[80] Xia Y, Xiong Y, Lim B and Skrabalak S 2009 Ang. Chem. Int. Ed. 48 60
[81] Wiley B, Herricks T, Sun Y and Xia Y 2004 Nano Lett. 4 1733
[82] Rycenga M, McLellan J M and Xia Y 2008 Adv. Mater. 20 2416
[83] Gou L and Murphy C J 2005 Chem. Mater. 17 3668
[84] Sun Y, Mayers B, Herricks T and Xia Y 2003 Nano Lett. 3 955
[85] Zhang S, Wei H, Bao K, Hakanson U, Halas N, Nordlander P and Xu H 2011 Phys. Rev. Lett. 107 096801
[86] Li Z, Bao K, Fang Y, Guan Z, Halas N J, Nordlander P and Xu H 2010 Phys. Rev. B 82 241402
[87] Wei H, Zhang S, Tian X and Xu H 2013 Proc. Natl. Acad. Sci. USA 110 4494
[88] Sun M, Zhang Z, Wang P, Li Q, Ma F and Xu H 2013 Light Sci. Appl. 2 e112
[89] Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F and Krenn J 2005 Phys. Rev. Lett. 95 257403
[90] Li Y, Kang M, Shi J, Wu K, Zhang S and Xu H 2017 Nano Lett. 17 7803
[91] Zhao N, Wei Y, Sun N, Chen Q, Bai J, Zhou L, Qin Y, Li M and Qi L 2008 Langmuir 24 991
[92] Anderson L, Zhen Y, Payne C, Nordlander P and Hafner J 2013 Nano Lett. 13 6256
[93] Anderson L, Payne C, Zhen Y, Nordlander P and Hafner J 2011 Nano Lett. 11 5034
[94] Lal S, Link S and Halas N 2007 Nat. Photon. 1 641
[95] Hu H, Duan H, Yang J K and Shen Z X 2012 ACS Nano 6 10147
[96] Shen S, Meng L, Zhang Y, Han J, Ma Z, Hu S, He Y, Li J, Ren B, Shih T M, Wang Z, Yang Z and Tian Z 2015 Nano Lett. 15 6716
[97] Luo S, Sivashanmugan K, Liao J, Yao C and Peng H 2014 Biosens. Bioelectron. 61 232
[98] Willets K 2009 Anal. Bioanal. Chem. 394 85
[99] Tong L, Righini M, Gonzalez M U, Quidant R and Käll M 2009 Lab Chip 9 193
[100] Qian X and Nie S 2008 Chem. Soc. Rev. 37 912
[101] Hering K, Cialla D, Ackermann K, Dorfer T, Moller R, Schneidewind H, Mattheis R, Fritzsche W, Rosch P and Popp J 2008 Anal. Bioanal. Chem. 390 113
[102] Chen J, Albella P, Pirzadeh Z, Alonso-González P, Huth F, Bonetti S, Bonanni V, Åkerman J, Nogués J, Vavassori P, Dmitriev A, Aizpurua J and Hillonbrand R 2011 Small 7 2341
[103] Chen W, Zhang S, Deng Q and Xu H 2018 Nat. Commun. 9 801
[104] Lu G, De Keersmaecker H, Su L, Kenens B, Rocha S, Fron E, Chen C, Van Dorpe P, Mizuno H, Hofkens J, Hutchison J and Uji-i H 2014 Adv. Mater. 26 5124
[105] De Angelis F, Das G, Candeloro P, Patrini M, Galli M, Bek A, Lazzarino M, Maksymov I, Liberale C, Andreani L and Di Fabrizio E 2010 Nat. Nanotech. 5 67
[106] Wei H, Pan D and Xu H 2015 Nanoscale 7 19053
[107] Wei H, Li Z, Tian X, Wang Z, Cong F, Liu N, Zhang S, Nordlander P, Halas N and Xu H 2011 Nano Lett. 11 471
[108] Wei H, Wang Z, Tian X, Käll M and Xu H 2011 Nat. Commun. 2 387
[109] Pan D, Wei H, Gao L and Xu H 2016 Phys. Rev. Lett. 117 166803
[110] Dicken M, Sweatlock L, Pacifici D, Lezec H, Bhattacharya K and Atwater H 2008 Nano Lett. 8 4048
[111] Dionne J, Diest K, Sweatlock L and Atwater H 2009 Nano Lett. 9 897
[112] Li Z, Zhang S, Halas N, Nordlander P and Xu H 2011 Small 7 593
[1] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[2] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[3] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[4] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[5] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[6] Interface modulated electron mobility enhancement in core-shell nanowires
Yan He(贺言), Hua-Kai Xu(许华慨), and Gang Ouyang(欧阳钢). Chin. Phys. B, 2022, 31(11): 110502.
[7] Improvement of femtosecond SPPs imaging by two-color laser photoemission electron microscopy
Chun-Lai Fu(付春来), Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Xiao-Wei Song(宋晓伟), Peng Lang(郎鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107103.
[8] Two-color laser PEEM imaging of horizontal and vertical components of femtosecond surface plasmon polaritons
Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Lun Wang(王伦), Peng Lang(郎鹏), Xiao-Wei Song(宋晓伟), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107104.
[9] Phase-matched second-harmonic generation in hybrid polymer-LN waveguides
Zijie Wang(王梓杰), Bodong Liu(刘伯东), Chunhua Wang(王春华), and Huakang Yu(虞华康). Chin. Phys. B, 2022, 31(10): 104208.
[10] Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities
Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚). Chin. Phys. B, 2022, 31(1): 014216.
[11] High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁). Chin. Phys. B, 2022, 31(1): 014102.
[12] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
[13] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[14] Bound states in the continuum on perfect conducting reflection gratings
Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2021, 30(8): 084211.
[15] A simple method to synthesize worm-like AlN nanowires and its field emission studies
Qi Liang(梁琦), Meng-Qi Yang(杨孟骐), Chang-Hao Wang(王长昊), and Ru-Zhi Wang(王如志). Chin. Phys. B, 2021, 30(8): 087302.
No Suggested Reading articles found!