Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 107103    DOI: 10.1088/1674-1056/ac6ede
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Improvement of femtosecond SPPs imaging by two-color laser photoemission electron microscopy

Chun-Lai Fu(付春来), Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Xiao-Wei Song(宋晓伟), Peng Lang(郎鹏), and Jing-Quan Lin(林景全)
School of Physics, Changchun University of Science and Technology, Changchun 130022, China
Abstract  Clear imaging of surface plasmon polaritons (SPPs) is a prerequisite for SPPs-based applications. In this work, we demonstrate an improvement of near-field imaging of SPPs via directly comparing the visibility of the photoemission electron microscopy (PEEM) image of SPPs under one- and two-color laser excitation (also known as one- or two-color laser PEEM). By measuring the photoelectron yield and the contrast of the interference fringes of SPPs, we demonstrate that in addition to enhancing the photoemission yield, two-color laser PEEM can significantly improve the contrast between bright and dark fringes (nearly 4 times higher than that of one-color laser case). By recording the nonlinear order of the photoelectrons ejected from the bright and dark fringes, respectively, the underlying mechanism for the improved visibility is revealed. In addition, the influences of the polarization direction of 400-nm laser on the PEEM images of the SPPs with different wave vector directions are shown. These results can provide technical support for the development of SPPs-based communication devices and catalysis.
Keywords:  surface plasmon polaritons      photoemission electron microscopy      near-field imaging  
Received:  02 March 2022      Revised:  06 May 2022      Accepted manuscript online: 
PACS:  71.45.Gm (Exchange, correlation, dielectric and magnetic response functions, plasmons)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62005022 and 12004052), the Fund from the Jilin Provincial Key Laboratory of Ultrafast and Extreme Ultraviolet Optics, China (Grant No. YDZJ202102CXJD028), the Fund from the Department of Science and Technology of Jilin Province, China (Grant Nos. 20200201268JC and 20200401052GX), the “111” Project of China (Grant No. D17017), and the Fund from the Ministry of Education Key Laboratory for Cross-Scale Microand Nano-Manufacturing, Changchun University of Science and Technology, China.
Corresponding Authors:  Bo-Yu Ji, Xiao-Wei Song     E-mail:  jiboyu@cust.edu.cn;songxiaowei@cust.edu.cn

Cite this article: 

Chun-Lai Fu(付春来), Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Xiao-Wei Song(宋晓伟), Peng Lang(郎鹏), and Jing-Quan Lin(林景全) Improvement of femtosecond SPPs imaging by two-color laser photoemission electron microscopy 2022 Chin. Phys. B 31 107103

[1] Brongersma M L and Shalaev V M 2010 Science 328 440
[2] Berini P and Leon I D 2012 Nat. Photon. 6 16
[3] Maier S A and Atwater H A 2005 J. Appl. Phys. 98 10
[4] Benson O 2011 Nature 480 193
[5] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[6] Berini P, Charbonneau R and Lahoud N 2005 J. Appl. Phys. 98 043109
[7] Ozbay E 2006 Science 311 189
[8] Gramotnev D K and Bozhevolnyi S I 2010 Nat. Photon. 4 83
[9] Fu P B and Chen Y G 2022 Chin. Phys. B 31 014216
[10] Hu L X, He Z Q, Hu M and Liu S G 2021 Chin. Phys. B 30 084102
[11] Suo P, Mao L and Xu H 2020 Chin. Phys. Lett. 30 017801
[12] Wei H, Pan D, Zhang S, Li Z, Li Q, Liu N, Wang W and Xu H 2018 Chem. Rev. 118 2882
[13] Lemke C, Schneider C, Leißner T, Bayer D, Radke J W, Fischer A, Melchior P, Evlyukhin A B, Chichkov B N, Reinhardt C, Bauer M and Aeschlimann M 2013 Nano Lett. 13 1053
[14] Spektor G, Kilbane D, Mahro A K, G. Frank B. Ristok S, Gal L, Kahl P, Podbiel D, Mathias S, Giessen H F, Meyer zu Heringdorf F J, Orenstein M and Aeschlimann M 2017 Science 355 1187
[15] Joly A G, Gong Y, El-Khoury P Z and Hess W P 2018 J. Phys. Chem. Lett. 9 6164
[16] Wild B, Cao L, Sun Y, Khanal B P, Zubarev E R, Gray S K, Scherer N F and Pelton M 2012 ACS Nano 6 472
[17] Wang Q, Bu J and Yuan X 2010 Opt. Express 18 2662
[18] Qin Y, Song X, Ji B Xu Y and Lin J 2019 Opt. Lett. 44 2935
[19] Yang J, Sun Q, Yu H, Ueno K, Misawa H and Gong Q 2017 Photon. Res. 5 187
[20] Liu W, Yu H, Li Y, Hu A, Wang j, Lu G, Li X, Yang H, Dai L, Wang S and Gong Q 2021 Nano Lett. 21 2932
[21] Kirschbaum P, Buckanie N M and Heringdorf F J 2012 Plasmonics 7 229
[22] Leißner T, Thilsing-Hansen K, Lemke C, Jauernik S, Kjelstrup-Hansen J, Bauer M and Rubahn H G 2012 Plasmonics 7 253
[23] Ji B, Song X, Dou Y, Tao H, Gao H, Hao Z and Lin J 2018 New J. Phys. 20 073031
[24] Hu H, Qin Y, Lang P, Song X, Ji B and Lin J 2022 Opt. Laser Technol. 146 107538
[25] Zhao Z, Lang P, Qin Y Ji B, Song X and Lin J 2020 Opt. Express 28 19023
[26] Shibuta M, Eguchi T and Nakajima A 2013 Plasmonics 8 1411
[27] Crampton K T, Joly A G and El-Khoury P Z 2019 J. Phys. Chem. Lett. 10 5694
[28] Gong Y, Joly A G, Hu D and Hess W P 2015 Nano Lett. 15 3472
[29] Förster M, Paschen T, Krüger M, Lemell C, Wachter G, Libisch F, Madlener T, Burgdörfer J and Hommelhof P 2016 Phys. Rev. Lett. 117 217601
[30] Yamagiwa K, Shibuta M and Nakajima A 2017 Phys. Chem. Chem. Phys. 19 13455
[31] Qin Y, Xu Y, Ji B, Song X and Lin J 2022 Appl. Phys. B 128 1
[32] Gong Y, Joly A G, El-Khoury P Z and Hess W P 2017 J. Phys. Chem. Lett. 8 49
[33] Qin Y, Ji B, Song X and Lin J 2021 Photon. Res. 9 514
[34] Podbiel D, Kahl P, Makris A, Frank B, Sindermann S, Davis T J, Giessen H, Hoegen M H and Meyer zu Heringdorf F J 2017 Nano Lett. 17 6569
[1] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[2] Two-color laser PEEM imaging of horizontal and vertical components of femtosecond surface plasmon polaritons
Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Lun Wang(王伦), Peng Lang(郎鹏), Xiao-Wei Song(宋晓伟), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107104.
[3] Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities
Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚). Chin. Phys. B, 2022, 31(1): 014216.
[4] High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁). Chin. Phys. B, 2022, 31(1): 014102.
[5] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[6] Bound states in the continuum on perfect conducting reflection gratings
Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2021, 30(8): 084211.
[7] High sensitive chiral molecule detector based on the amplified lateral shift in Kretschmann configuration involving chiral TDBCs
Song Wang(王松), Qihui Ye(叶起惠), Xudong Chen(陈绪栋), Yanzhu Hu(胡燕祝), and Gang Song(宋钢). Chin. Phys. B, 2021, 30(6): 067301.
[8] Design and verification of a broadband highly-efficient plasmonic circulator
Jianfei Han(韩建飞), Shu Zhen(甄姝), Weihua Wang(王伟华), Kui Han(韩奎), Haipeng Li(李海鹏), Lei Zhao(赵雷), and Xiaopeng Shen(沈晓鹏). Chin. Phys. B, 2021, 30(3): 034102.
[9] Spoof surface plasmon polaritons excited leaky-wave antenna with continuous scanning range from endfire to forward
Tao Zhong(钟涛), Hou Zhang(张厚). Chin. Phys. B, 2020, 29(9): 094101.
[10] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[11] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘). Chin. Phys. B, 2020, 29(6): 067801.
[12] Cherenkov terahertz radiation from Dirac semimetals surface plasmon polaritons excited by an electron beam
Tao Zhao(赵陶), Zhenhua Wu(吴振华). Chin. Phys. B, 2020, 29(3): 034101.
[13] Properties of metal-insulator-metal waveguide loop reflector
Hu Long(龙虎), Xuan-Ke Zeng(曾选科), Yi Cai(蔡懿), Xiao-Wei Lu(陆小微), Hong-Yi Chen(陈红艺), Shi-Xiang Xu(徐世祥), Jing-Zhen Li(李景镇). Chin. Phys. B, 2019, 28(9): 094215.
[14] Surface plasmon polariton waveguides with subwavelength confinement
Longkun Yang(杨龙坤), Pan Li(李盼), Hancong Wang(汪涵聪), Zhipeng Li(李志鹏). Chin. Phys. B, 2018, 27(9): 094216.
[15] Characteristic plume morphologies of atmospheric Ar and He plasma jets excited by a pulsed microwave hairpin resonator
Zhao-Quan Chen(陈兆权), Ben-Kuan Zhou(周本宽), Huang Zhang(张煌), Ling-Li Hong(洪伶俐), Chang-Lin Zou(邹长林), Ping Li(李平), Wei-Dong Zhao(赵卫东), Xiao-Dong Liu(刘晓东), Olga Stepanova, A A Kudryavtsev. Chin. Phys. B, 2018, 27(5): 055202.
No Suggested Reading articles found!