ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Compact and high-efficient wavelength demultiplexing coupler based on high-index dielectric nanoantennas |
Jingfeng Tan(谭敬丰), Hua Pang(庞画), Fengkai Meng(孟凤凯), Jin Jiang(蒋进) |
State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China |
|
|
Abstract Wavelength demultiplexing waveguide couplers have important applications in integrated nanophotonic devices. Two of the most important indicators of the quality of a wavelength demultiplexing coupler are coupling efficiency and splitting ratio. In this study, we utilize two asymmetric high-index dielectric nanoantennas directly positioned on top of a silicon-on insulator waveguide to realize a compact wavelength demultiplexing coupler in a communication band, which is based on the interference of the waveguide modes coupled by the two nanoantennas. We add a Au substrate for further increasing the coupling efficiency. This has constructive and destructive influences on the antenna's in-coupling efficiency owing to the Fabry-Perot (FP) resonance in the SiO2 layer. Therefore, we can realize a wavelength demultiplexing coupler with compact size and high coupling efficiency. This coupler has widespread applications in the areas of wavelength filters, on-chip signal processing, and integrated nanophotonic circuits.
|
Received: 19 April 2018
Revised: 07 June 2018
Accepted manuscript online:
|
PACS:
|
42.79.Sz
|
(Optical communication systems, multiplexers, and demultiplexers?)
|
|
42.82.Et
|
(Waveguides, couplers, and arrays)
|
|
42.82.-m
|
(Integrated optics)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0205700 and 2015CB932403) and the National Natural Science Foundation of China (Grant Nos. 11174062, 51472057, and 21790364). |
Corresponding Authors:
Jingfeng Tan
E-mail: jftan@pku.edu.cn
|
Cite this article:
Jingfeng Tan(谭敬丰), Hua Pang(庞画), Fengkai Meng(孟凤凯), Jin Jiang(蒋进) Compact and high-efficient wavelength demultiplexing coupler based on high-index dielectric nanoantennas 2018 Chin. Phys. B 27 094217
|
[1] |
Piggott A Y, Lu J, Lagoudakis K G, Petykiewicz J, Babinec T M and Vučković J 2015 Nat. Photon. 9 374
|
[2] |
Gan Q Q, Guo B S, Song G F, Chen L H, Fu Z, Ding Y J and Bartoli F J 2007 Appl. Phys. Lett. 90 161130
|
[3] |
Caglayan H and Ozbay E 2008 Opt. Express 16 19091
|
[4] |
Gan Q Q and Bartoli F J 2010 Opt. Lett. 35 4181
|
[5] |
Guo R, Decker M, Setzpfandt F, Staude I, Neshev D N and Kivshar Y S 2015 Nano Lett. 15 3324
|
[6] |
Liu J S, Pala R A, Afshinmanesh F, Cai W and Brongersma M L 2011 Nat. Commun. 2 525
|
[7] |
Sun C W, Chen J J, Li H Y and Gong Q H 2015 Opt. Lett. 40 685
|
[8] |
Liao H M, Li Z, Chen J J, Zhang X, Yue S and Gong Q H 2013 Sci. Rep. 3 1918
|
[9] |
Zhang X, Li Z, Chen J J, Liao H M, Yue S and Gong Q H 2013 Appl. Phys. Lett. 102 091110
|
[10] |
Liu Y M, Palomba S, Park Y, Zentgraf T, Yin X B and Zhang X 2012 Nano Lett. 12 4853
|
[11] |
Baron A, Devaux E, Rodier J C, Hugonin J P, Rousseau E, Genet C and Lalanne P 2011 Nano Lett. 11 4207
|
[12] |
Lu C C, Liu Y C, Hu X Y, Yang H and Gong Q H 2016 Sci. Rep. 6 27428
|
[13] |
Li K, Liu D L, Ho C C, Lu F and Xu A S 2015 IEEE Photon. Tech. Lett. 27 268
|
[14] |
Li K, Xiao F, Lu F, Liu D L, Alameh K and Xu A S 2014 J. Opt. Soc. Am. B 31 387
|
[15] |
Sidiropoulos T P, Nielsen M P, Roschuk T R, Zayats A V, Maier S A and Oulton R F 2014 ACS Photon. 1 912
|
[16] |
Briggs R M, Grandidier J, Burgos S P, Feigenbaum E and Atwater H A 2010 Nano Lett. 10 4851
|
[17] |
Alam M Z, Aitchison J S and Mojahedi M 2014 Laser Photon. Rev. 8 394
|
[18] |
Guo X, Qiu M, Bao J M, Wiley B J, Yan Q, Zhang X N, Ma Y G, Yu H K and Tong L 2009 Nano Lett. 9 4515
|
[19] |
Wen J, Romanov S and Peschel U 2009 Opt. Express 17 5925
|
[20] |
Zhang S P, Gu C Z and Xu H X 2014 Small 10 4264
|
[21] |
Rodríguez-Fortuño F J, Marino G, Ginzburg P, O'Connor D, Martínez A, Wurtz G A and Zayats A V 2013 Science 340 328
|
[22] |
Novotny L and Van Hulst N 2011 Nat. Photon. 5 83
|
[23] |
Bernal Arango F, Kwadrin A and Koenderink A F 2012 ACS Nano 6 10156
|
[24] |
Sidiropoulos T P H, Maier S A and Oulton R F 2012 Opt. Express 20 12359
|
[25] |
Vercruysse D, Neutens P, Lagae L, Verellen N and Van Dorpe P 2017 ACS Photon. 4 1398
|
[26] |
Guo R, Decker M, Staude I, Neshev D N and Kivshar Y S 2014 Appl. Phys. Lett. 105 053114
|
[27] |
Taillaert D, Van Laere F, Ayre M, Bogaerts W, Van Thourhout D, Bienstman P and Baets R 2006 Jpn. J. Appl. Phys. 45 6071
|
[28] |
Roelkens G, Van Thourhout D and Baets R 2007 Opt. Express 15 10091
|
[29] |
Piggott A Y, Lu J, Babinec T M, Lagoudakis K G, Petykiewicz J and Vučković J 2015 Sci. Rep. 4 7210
|
[30] |
Aieta F, Kats M A Genevet P and Capasso F 2015 Science 347 1342
|
[31] |
Kuznetsov A I, Miroshnichenko A E, Brongersma M L, Kivshar Y S and Luk'yanchuk B 2016 Science 354 2472
|
[32] |
Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370
|
[33] |
Palik E D 1985 Handbook of Optical Constants of Solids (New York:Academic Press)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|