ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Generation and evolution of multiple operation states in passively mode-locked thulium-doped fiber laser by using a graphene-covered-microfiber |
Xiao-Fa Wang(王小发), Jun-Hong Zhang(张俊红), Xiao-Ling Peng(彭晓玲), Xue-Feng Mao(毛雪峰) |
College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Key Laboratory ofOptical Fiber Communication Technology, Chongqing Education Commission, Chongqing, China |
|
|
Abstract Using graphene-covered-microfiber (GCM) as a saturable absorber, the generation and evolution of multiple operation states are proposed and demonstrated in passively mode-locked thulium-doped fiber laser. The microfiber was fabricated using the flame brushing method to an interaction length of~1.2 cm with a waist diameter of~10 μm. Graphene layers were grown on copper foils by chemical vapor deposition and transferred onto the polydimethylsiloxane (PDMS) to form a PDMS/graphene film, which allowed light-graphene interaction via evanescent field. With the increase of the pump power from 1.25 W to 2.15 W, five different lasing regimes, including continuous-wave, conventional soliton mode-locking, multi-soliton mode-locking, a period of transition, and noise-like mode-locking, were achieved in a fiber ring cavity. To the best of our knowledge, it is the first report of the generation and evolution of multiple operation states by covering graphene on the microfiber in the 2-μm region. The results demonstrate that GCM can be a promising method for fabricating all fiber SA, and the switchable operation states can provide more portability in complex application domain.
|
Received: 10 March 2018
Revised: 26 April 2018
Accepted manuscript online:
|
PACS:
|
42.55.Wd
|
(Fiber lasers)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304409 and 61705028), the Natural Science Foundation of Chongqing City, China (Grant Nos. csct2013jcyjA4004 and cstc2017jcyjA0893), the Scientific and Technological Research Program of Chongqing Municipal Education Commission, China (Grant No. KJ1500422), and the Postgraduate Research Innovation Foundation of Chongqing City, China (Grant No. CYS17240). |
Corresponding Authors:
Xiao-Fa Wang
E-mail: wangxf@cqupt.edu.cn
|
Cite this article:
Xiao-Fa Wang(王小发), Jun-Hong Zhang(张俊红), Xiao-Ling Peng(彭晓玲), Xue-Feng Mao(毛雪峰) Generation and evolution of multiple operation states in passively mode-locked thulium-doped fiber laser by using a graphene-covered-microfiber 2018 Chin. Phys. B 27 084215
|
[1] |
Wang Q, Geng J, Luo T and Jiang S 2009 Opt. Lett. 34 3616
|
[2] |
Yan Z Y, Li X H, Tang Y L, Shum P P, Yu X, Zhang Y and Wang Q J 2015 Opt. Express 23 4369
|
[3] |
Jin X X, Wang X, Wang X L and Zhou P 2015 Appl. Opt. 54 8260
|
[4] |
Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W and Abramski K M 2015 Opt. Express 23 9339
|
[5] |
Boguslawski J, Sotor J, Sobon G, Kozinski R, Librant K, Aksienionek M, Lipinska L and Abramski K M 2015 Photon. Res. 3 119
|
[6] |
Sotor J, Sobon G, Pasternak I, Krajewska A, Strupinski W and Abramski K M 2013 Opt. Express 21 18994
|
[7] |
Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W and Abramski K M 2013 Opt. Express 21 12797
|
[8] |
Jiang K, Wu Z C, Fu S N, Song J, Li H Z, Tang M, Shum P and Liu D M 2016 IEEE Photon. Technol. Lett. 28 2019
|
[9] |
Wang X F, Peng X L, Jiang Q X, Gu X H, Zhang J H, Mao X F and Yuan S Z 2017 Chin. Phys. B 26 114205
|
[10] |
Jung M, Lee J, Koo J, Park J, Song Y W, Lee K, Lee S and Lee J H 2014 Opt. Express 22 7865
|
[11] |
Sotor J, Sobon G, Kowalczyk M, Macherzynski W, Paletko P and Abramski K M 2015 Opt. Lett. 40 3885
|
[12] |
Luo Z Q, Li Y Y and Huang Y Z 2016 Opt. Eng. 55 081310
|
[13] |
Fu B, Hua Y, Xiao X S, Zhu H W, Sun Z P and Yang C X 2014 IEEE J. Sel. Top. Quantum Electron. 20 1100705
|
[14] |
Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W and Abramski K M 2015 Opt. Mater. Express 5 2884
|
[15] |
Yang G, Liu Y G, Wang Z, Lou J C, Wang Z H and Liu Z B 2016 Laser Phys. Lett. 13 065105
|
[16] |
Wang Y, Ni W J, Set S Y and Yamashita S 2017 IEEE Photon. Technol. Lett. 29 913
|
[17] |
Li X H, Yu X C, Yan Z Y, Wang Q J, Yu X and Zhang Y 2015 Proc. IEEE Conf. Lasers Electro-Optics, May 10-15, 2015, San Jose, USA, p. 1
|
[18] |
Jung M, Koo J, Debnath P, Song Y W and Lee J H 2012 Appl. Phys. Express 5 112702
|
[19] |
Jeong H, Choi S Y, Kim M H, Rotermund F, Cha Y H, Jeong D Y, Lee S B, Lee K and Yeom D I 2016 Opt. Express 24 14152
|
[20] |
Wang Q Q, Chen T, Zhang B T, Li M S, Lu Y F and Chen K P 2013 Appl. Phys. Lett. 102 131117
|
[21] |
Ahmad H, Faruki M J, Razak M Z A, Tiu Z C and Ismail M F 2017 Opt. Laser Technol. 88 166
|
[22] |
Sheng Q W, Feng M, Xin W, Han T Y, Liu Y G, Liu Z B and Tian J G 2013 Opt. Express 21 14859
|
[23] |
Mouchel P, Semaan G, Niang A, Salhi M, Flohic M L and Sanchez F 2017 Appl. Phys. Lett. 111 031106
|
[24] |
Liu Z B, Feng M, Jiang W S, Xin W, Wang P, Sheng Q W, Liu Y G, Zhou W Y and Tian J G 2013 Laser Phys. Lett. 10 065901
|
[25] |
Ferrari A C and Robertson J 2000 Phys. Rev. B 61 14095
|
[26] |
Pimenta M A, Dresselhaus G, Dresselhaus M S, Cancado L G, Jorio A and Saito R 2007 Phys. Chem. Chem. Phys. 9 1276
|
[27] |
Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C and Wirtz L 2007 Nano Lett. 7 238
|
[28] |
Liu X M, Han D D, Sun Z P, Zeng C, Lu H, Mao D, Cui Y D and Wang F Q 2013 Sci. Rep. 3 2718
|
[29] |
Liu X M, Cui Y D, Han D D, Yao X K and Sun Z P 2015 Sci. Rep. 5 9101
|
[30] |
Jung M, Koo J, Park J, Song Y M, Jhon Y M, Lee K, Lee S and Lee J H 2013 Opt. Express 21 20062
|
[31] |
Liu M, Luo A P, Zheng X W, zhao N, Liu H, Luo Z C, Xu W C, Chen Y, Zhao C J and Zhang H 2015 J. Lightwave Technol. 33 2056
|
[32] |
Wang J Z, Liang X Y, Hu G H, Zheng Z J, Lin S H, Ouyang D, Wu X, Yan P G, Ruan S C, Sun Z P and Hasan T 2016 Sci. Rep. 6 28885
|
[33] |
Zheng X W, Luo Z C, Liu H, Zhao N, Ning Q Y, Liu M, Feng X H, Xing X B, Luo A P and Xu W C 2014 Appl. Phys. Express 7 042701
|
[34] |
Tang D Y, Zhao L M, Zhao B and Liu A Q 2005 Phys. Rev. A 72 043186
|
[35] |
Zhang H, Tang D Y, Wu X and Zhao L M 2009 Opt. Express 17 12692
|
[36] |
Grudinin A B, Richardson D J and Payne D N 1992 Electron. Lett. 28 67
|
[37] |
Liu X M 2010 Phys. Rev. A 81 023811
|
[38] |
Komarov A, Leblond H and Sanchez F 2005 Phys. Rev. A 71 362
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|