Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 084215    DOI: 10.1088/1674-1056/27/8/084215
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Generation and evolution of multiple operation states in passively mode-locked thulium-doped fiber laser by using a graphene-covered-microfiber

Xiao-Fa Wang(王小发), Jun-Hong Zhang(张俊红), Xiao-Ling Peng(彭晓玲), Xue-Feng Mao(毛雪峰)
College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Key Laboratory ofOptical Fiber Communication Technology, Chongqing Education Commission, Chongqing, China
Abstract  Using graphene-covered-microfiber (GCM) as a saturable absorber, the generation and evolution of multiple operation states are proposed and demonstrated in passively mode-locked thulium-doped fiber laser. The microfiber was fabricated using the flame brushing method to an interaction length of~1.2 cm with a waist diameter of~10 μm. Graphene layers were grown on copper foils by chemical vapor deposition and transferred onto the polydimethylsiloxane (PDMS) to form a PDMS/graphene film, which allowed light-graphene interaction via evanescent field. With the increase of the pump power from 1.25 W to 2.15 W, five different lasing regimes, including continuous-wave, conventional soliton mode-locking, multi-soliton mode-locking, a period of transition, and noise-like mode-locking, were achieved in a fiber ring cavity. To the best of our knowledge, it is the first report of the generation and evolution of multiple operation states by covering graphene on the microfiber in the 2-μm region. The results demonstrate that GCM can be a promising method for fabricating all fiber SA, and the switchable operation states can provide more portability in complex application domain.
Keywords:  fiber lasers      mode-locked      thulium-doped fiber      graphene      microfiber  
Received:  10 March 2018      Revised:  26 April 2018      Accepted manuscript online: 
PACS:  42.55.Wd (Fiber lasers)  
  42.60.Fc (Modulation, tuning, and mode locking)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304409 and 61705028), the Natural Science Foundation of Chongqing City, China (Grant Nos. csct2013jcyjA4004 and cstc2017jcyjA0893), the Scientific and Technological Research Program of Chongqing Municipal Education Commission, China (Grant No. KJ1500422), and the Postgraduate Research Innovation Foundation of Chongqing City, China (Grant No. CYS17240).
Corresponding Authors:  Xiao-Fa Wang     E-mail:  wangxf@cqupt.edu.cn

Cite this article: 

Xiao-Fa Wang(王小发), Jun-Hong Zhang(张俊红), Xiao-Ling Peng(彭晓玲), Xue-Feng Mao(毛雪峰) Generation and evolution of multiple operation states in passively mode-locked thulium-doped fiber laser by using a graphene-covered-microfiber 2018 Chin. Phys. B 27 084215

[1] Wang Q, Geng J, Luo T and Jiang S 2009 Opt. Lett. 34 3616
[2] Yan Z Y, Li X H, Tang Y L, Shum P P, Yu X, Zhang Y and Wang Q J 2015 Opt. Express 23 4369
[3] Jin X X, Wang X, Wang X L and Zhou P 2015 Appl. Opt. 54 8260
[4] Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W and Abramski K M 2015 Opt. Express 23 9339
[5] Boguslawski J, Sotor J, Sobon G, Kozinski R, Librant K, Aksienionek M, Lipinska L and Abramski K M 2015 Photon. Res. 3 119
[6] Sotor J, Sobon G, Pasternak I, Krajewska A, Strupinski W and Abramski K M 2013 Opt. Express 21 18994
[7] Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W and Abramski K M 2013 Opt. Express 21 12797
[8] Jiang K, Wu Z C, Fu S N, Song J, Li H Z, Tang M, Shum P and Liu D M 2016 IEEE Photon. Technol. Lett. 28 2019
[9] Wang X F, Peng X L, Jiang Q X, Gu X H, Zhang J H, Mao X F and Yuan S Z 2017 Chin. Phys. B 26 114205
[10] Jung M, Lee J, Koo J, Park J, Song Y W, Lee K, Lee S and Lee J H 2014 Opt. Express 22 7865
[11] Sotor J, Sobon G, Kowalczyk M, Macherzynski W, Paletko P and Abramski K M 2015 Opt. Lett. 40 3885
[12] Luo Z Q, Li Y Y and Huang Y Z 2016 Opt. Eng. 55 081310
[13] Fu B, Hua Y, Xiao X S, Zhu H W, Sun Z P and Yang C X 2014 IEEE J. Sel. Top. Quantum Electron. 20 1100705
[14] Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W and Abramski K M 2015 Opt. Mater. Express 5 2884
[15] Yang G, Liu Y G, Wang Z, Lou J C, Wang Z H and Liu Z B 2016 Laser Phys. Lett. 13 065105
[16] Wang Y, Ni W J, Set S Y and Yamashita S 2017 IEEE Photon. Technol. Lett. 29 913
[17] Li X H, Yu X C, Yan Z Y, Wang Q J, Yu X and Zhang Y 2015 Proc. IEEE Conf. Lasers Electro-Optics, May 10-15, 2015, San Jose, USA, p. 1
[18] Jung M, Koo J, Debnath P, Song Y W and Lee J H 2012 Appl. Phys. Express 5 112702
[19] Jeong H, Choi S Y, Kim M H, Rotermund F, Cha Y H, Jeong D Y, Lee S B, Lee K and Yeom D I 2016 Opt. Express 24 14152
[20] Wang Q Q, Chen T, Zhang B T, Li M S, Lu Y F and Chen K P 2013 Appl. Phys. Lett. 102 131117
[21] Ahmad H, Faruki M J, Razak M Z A, Tiu Z C and Ismail M F 2017 Opt. Laser Technol. 88 166
[22] Sheng Q W, Feng M, Xin W, Han T Y, Liu Y G, Liu Z B and Tian J G 2013 Opt. Express 21 14859
[23] Mouchel P, Semaan G, Niang A, Salhi M, Flohic M L and Sanchez F 2017 Appl. Phys. Lett. 111 031106
[24] Liu Z B, Feng M, Jiang W S, Xin W, Wang P, Sheng Q W, Liu Y G, Zhou W Y and Tian J G 2013 Laser Phys. Lett. 10 065901
[25] Ferrari A C and Robertson J 2000 Phys. Rev. B 61 14095
[26] Pimenta M A, Dresselhaus G, Dresselhaus M S, Cancado L G, Jorio A and Saito R 2007 Phys. Chem. Chem. Phys. 9 1276
[27] Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C and Wirtz L 2007 Nano Lett. 7 238
[28] Liu X M, Han D D, Sun Z P, Zeng C, Lu H, Mao D, Cui Y D and Wang F Q 2013 Sci. Rep. 3 2718
[29] Liu X M, Cui Y D, Han D D, Yao X K and Sun Z P 2015 Sci. Rep. 5 9101
[30] Jung M, Koo J, Park J, Song Y M, Jhon Y M, Lee K, Lee S and Lee J H 2013 Opt. Express 21 20062
[31] Liu M, Luo A P, Zheng X W, zhao N, Liu H, Luo Z C, Xu W C, Chen Y, Zhao C J and Zhang H 2015 J. Lightwave Technol. 33 2056
[32] Wang J Z, Liang X Y, Hu G H, Zheng Z J, Lin S H, Ouyang D, Wu X, Yan P G, Ruan S C, Sun Z P and Hasan T 2016 Sci. Rep. 6 28885
[33] Zheng X W, Luo Z C, Liu H, Zhao N, Ning Q Y, Liu M, Feng X H, Xing X B, Luo A P and Xu W C 2014 Appl. Phys. Express 7 042701
[34] Tang D Y, Zhao L M, Zhao B and Liu A Q 2005 Phys. Rev. A 72 043186
[35] Zhang H, Tang D Y, Wu X and Zhao L M 2009 Opt. Express 17 12692
[36] Grudinin A B, Richardson D J and Payne D N 1992 Electron. Lett. 28 67
[37] Liu X M 2010 Phys. Rev. A 81 023811
[38] Komarov A, Leblond H and Sanchez F 2005 Phys. Rev. A 71 362
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Wavelength switchable mode-locked fiber laser with a few-mode fiber filter
Shaokang Bai(白少康), Yujin Xiang(向昱锦), and Zuxing Zhang(张祖兴). Chin. Phys. B, 2023, 32(2): 024209.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[6] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[7] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[8] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[9] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[10] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[11] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[12] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[13] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[14] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[15] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
No Suggested Reading articles found!