CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Intrinsic charge transport behaviors in graphene-black phosphorus van der Waals heterojunction devices |
Guo-Cai Wang(王国才)1,2, Liang-Mei Wu(吴良妹)1,2, Jia-Hao Yan(严佳浩)1,2, Zhang Zhou(周璋)1,2, Rui-Song Ma(马瑞松)1,2, Hai-Fang Yang(杨海方)1,2, Jun-Jie Li(李俊杰)1,2, Chang-Zhi Gu(顾长志)1,2, Li-Hong Bao(鲍丽宏)1,2, Shi-Xuan Du(杜世萱)1,2, Hong-Jun Gao(高鸿钧)1,2 |
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Heterostructures from mechanically-assembled stacks of two-dimensional materials allow for versatile electronic device applications. Here, we demonstrate the intrinsic charge transport behaviors in graphene-black phosphorus heterojunction devices under different charge carrier densities and temperature regimes. At high carrier densities or in the ON state, tunneling through the Schottky barrier at the interface between graphene and black phosphorus dominates at low temperatures. With temperature increasing, the Schottky barrier at the interface is vanishing, and the channel current starts to decrease with increasing temperature, behaving like a metal. While at low carrier densities or in the OFF state, thermal emission over the Schottky barrier at the interface dominates the carriers transport process. A barrier height of ~67.3 meV can be extracted from the thermal emission-diffusion theory.
|
Received: 29 March 2018
Revised: 16 April 2018
Accepted manuscript online:
|
PACS:
|
73.40.Gk
|
(Tunneling)
|
|
73.40.Ei
|
(Rectification)
|
|
73.40.Cg
|
(Contact resistance, contact potential)
|
|
73.40.Lq
|
(Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CBA01600), the National Key Research & Development Project of China (Grant No. 2016YFA0202300), the National Natural Science Foundation of China (Grant Nos. 61474141, 61674170, 61335006, 61390501, 51325204, and 51210003), Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 20150005), and the China Postdoctoral Science Foundation (Grant No. 2017M623146). |
Corresponding Authors:
Li-Hong Bao
E-mail: lhbao@iphy.ac.cn
|
Cite this article:
Guo-Cai Wang(王国才), Liang-Mei Wu(吴良妹), Jia-Hao Yan(严佳浩), Zhang Zhou(周璋), Rui-Song Ma(马瑞松), Hai-Fang Yang(杨海方), Jun-Jie Li(李俊杰), Chang-Zhi Gu(顾长志), Li-Hong Bao(鲍丽宏), Shi-Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧) Intrinsic charge transport behaviors in graphene-black phosphorus van der Waals heterojunction devices 2018 Chin. Phys. B 27 077303
|
[1] |
Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
|
[2] |
Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451
|
[3] |
Schwierz F 2010 Nat. Nanotechnol. 5 487
|
[4] |
Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
|
[5] |
Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K and Colombo L 2014 Nat. Nanotechnol. 9 768
|
[6] |
Guo H, Lu H L, Huang L, Wang X Y, Lin X, Wang Y L, Du S X and Gao H J 2017 Acta Phys. Sin. 66 216803 (in Chinese)
|
[7] |
Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
|
[8] |
Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz F, Hong S S, Huang J and Ismach A F 2013 ACS Nano 7 2898
|
[9] |
Liu Y, Wu H, Cheng H C, Yang S, Zhu E B, He Q Y, Ding M N, Li D H, Guo J, Weiss N O, Huang Y and Duan X F 2015 Nano Lett. 15 3030
|
[10] |
Shim J and Park J H 2016 Org. Electron. 33 172
|
[11] |
Roy K, Padmanabhan M, Goswami S, Sai T P, Ramalingam G, Raghavan S and Ghosh A 2013 Nat. Nanotechnol. 8 826
|
[12] |
Meng J, Song H D, Li C Z, Jin Y, Tang L, Liu D, Liao Z M, Xiu F and Yu D P 2015 Nanoscale 7 11611
|
[13] |
Su W J, Chang H C, Shih Y T, Wang Y P, Hsu H P, Huang Y S and Lee K Y 2016 J. Alloys Compd. 671 276
|
[14] |
Moriya R, Yamaguchi T, Inoue Y, Morikawa S, Sata Y, Masubuchi S and Machida T 2014 Appl. Phys. Lett. 105 083119
|
[15] |
Yoon J, Park W, Bae G Y, Kim Y, Jang H S, Hyun Y, Lim S K, Kahng Y H, Hong W K and Lee B H 2013 Small 9 3295
|
[16] |
Das S, Gulotty R, Sumant A V and Roelofs A 2014 Nano Lett. 14 2861
|
[17] |
Guan J, Zhu Z and Tomanek D 2014 ACS Nano 8 12763
|
[18] |
Zhu W, Yogeesh M N, Yang S, Aldave S H, Kim J S, Sonde S, Tao L, Lu N and Akinwande D 2015 Nano Lett. 15 1883
|
[19] |
Jiang J W and Park H S 2014 J. Phys. D:Appl. Phys. 47 385304
|
[20] |
Das S, Zhang W, Demarteau M, Hoffmann A, Dubey M and Roelofs A 2014 Nano Lett. 14 5733
|
[21] |
Pan D X, Wang T C and Guo W L 2015 Chin. Phys. B 24 86401
|
[22] |
Yan S L, Xie Z J, Chen J H, Taniguchi T and Watanabe K J 2017 Chin. Phys. Lett. 34 047304
|
[23] |
Qiao J S, Kong X, Hu Z X, Yang F and Ji W 2014 Nat. Commun. 5 4475
|
[24] |
Baba M, Nakamura Y, Takeda Y, Shibata K, Morita A, Koike Y and Fukase T 1992 J. Phys.:Condens. Matter 4 1535
|
[25] |
Wang H, Wang X M, Xia F N, Wang L H, Jiang H, Xia Q F, Chin M L, Dubey M and Han S J 2014 Nano Lett. 14 6424
|
[26] |
Cao Y, Mishchenko A, Yu G L, Khestanova E, Rooney A P, Prestat E, Kretinin A V, Blake P, Shalom M B, Woods C, Chapman J, Balakrishnan G, Grigorieva I V, Novoselov K S, Piot B A, Potemski M, Watanabe K, Taniguchi T, Haigh S J, Geim A K and Gorbachev R V 2015 Nano Lett. 15 4914
|
[27] |
Liu H, Neal A T, Si M W, Du Y C and Ye P D 2014 IEEE Electron. Device Lett. 35 795
|
[28] |
Luo X, Rahbarihagh Y, Hwang J C M, Liu H, Du Y C and Ye P D 2014 IEEE Electron. Device Lett. 35 1314
|
[29] |
Avsar A, Vera-Marun I J, Tan J Y, Watanabe K, Taniguchi T, Castro Neto A H and Ozyilmaz B 2015 ACS Nano 9 4138
|
[30] |
Qiao J S, L Z and Ji W 2017 Chin. Phys. B 26 36803
|
[31] |
Castellanos-Gomez A 2015 J. Phys. Chem. Lett. 6 4280
|
[32] |
Gillgren N, Wickramaratne D, Shi Y M, Espiritu T, Yang J W, Hu J, Wei J, Liu X, Mao Z Q, Watanabe K, Taniguchi T, Bockrath M, Barlas Y, Lake R K and Lau C N 2015 2D Mater. 2 011001
|
[33] |
Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tomanek D and Ye P D 2014 ACS Nano 8 4033
|
[34] |
Koenig S P, Doganov R A, Schmidt H, Castro Neto A H and Zyilmaz B 2014 Appl. Phys. Lett. 104 103106
|
[35] |
Xia F, Wang H and Jia Y 2014 Nat. Commun. 5 4458
|
[36] |
Li X F, Xiong X and Wu Y Q 2017 Chin. Phys. B 26 37307
|
[37] |
Du Y C, Liu H, Deng Y X and Ye P D 2014 ACS Nano 8 10035
|
[38] |
Das S, Demarteau M and Roelofs A 2014 ACS Nano 8 11730
|
[39] |
Allain A, Kang J, Banerjee K and Kis A 2015 Nat. Mater. 14 1195
|
[40] |
Guo W, Jing F, Xiao J, Zhou C, Lin Y W and Wang S 2016 Adv. Mater. 28 3152
|
[41] |
Wang G C, Bao L H, Pei T F, Ma R S, Zhang Y Y, Sun L L, Zhang G Y, Yang H F, Li J J, Gu C Z, Du S X, Pantelides S T, Schrimpf R D and Gao H J 2016 Nano Lett. 16 6870
|
[42] |
Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H and Zhang Y B 2014 Nat. Nanotechnol. 9 372
|
[43] |
Kang J, Jariwala D, Ryder C R, Wells S A, Choi Y, Hwang E, Cho J H, Marks T J and Hersam M C 2016 Nano Lett. 16 2580
|
[44] |
Sze S M and Ng K K 2006 Physics of Semiconductor Devices (New York:John Wiley & Sons) p. 134
|
[45] |
Saito Y and Iwasa Y 2015 ACS Nano 9 3192
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|