CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Gap plasmon-enhanced photoluminescence of monolayer MoS2 in hybrid nanostructure |
Le Yu(余乐)1,2, Di Liu(刘頔)1,2, Xiao-Zhuo Qi(祁晓卓)1,2, Xiao Xiong(熊霄)1,2, Lan-Tian Feng(冯兰天)1,2, Ming Li(李明)1,2, Guo-Ping Guo(郭国平)1,2, Guang-Can Guo(郭光灿)1,2, Xi-Feng Ren(任希锋)1,2 |
1. Key Laboratory of Quantum Information, Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026, China;
2. Synergetic Innovation Center of Quantum Information & Quantum Physics |
|
|
Abstract Monolayer transition-metal dichalcogenides (TMDs) have attracted a lot of attention for their applications in optics and optoelectronics. Molybdenum disulfide (MoS2), as one of those important materials, has been widely investigated due to its direct band gap and photoluminescence (PL) in visible range. Owing to the fact that the monolayer MoS2 suffers low light absorption and emission, surface plasmon polaritons (SPPs) are used to enhance both the excitation and emission efficiencies. Here, we demonstrate that the PL of MoS2 sandwiched between 200-nm-diameter gold nanoparticle (AuNP) and 150-nm-thick gold film is improved by more than 4 times compared with bare MoS2 sample. This study shows that gap plasmons can possess more optical and optoelectronic applications incorporating with many other emerging two-dimensional materials.
|
Received: 02 February 2018
Revised: 14 February 2018
Accepted manuscript online:
|
PACS:
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61590932 and 11774333), the Anhui Initiative Project in Quantum Information Technologies, China (Grant No. AHY130300), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB24030600), the National Key Research and Development Program of China (Grant No. 2016YFA0301700), and the Fundamental Research Funds for the Central Universities, China. |
Corresponding Authors:
Xi-Feng Ren
E-mail: renxf@ustc.edu.cn
|
Cite this article:
Le Yu(余乐), Di Liu(刘頔), Xiao-Zhuo Qi(祁晓卓), Xiao Xiong(熊霄), Lan-Tian Feng(冯兰天), Ming Li(李明), Guo-Ping Guo(郭国平), Guang-Can Guo(郭光灿), Xi-Feng Ren(任希锋) Gap plasmon-enhanced photoluminescence of monolayer MoS2 in hybrid nanostructure 2018 Chin. Phys. B 27 047302
|
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V and Firsov A A 2004 Science 306 666
|
[2] |
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotech. 7 699
|
[3] |
Ezawa M 2012 Phys. Rev. B 86 161407
|
[4] |
Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
|
[5] |
Xiao D, Liu G B, Feng W X, Xu X D and Yao W 2012 Phys. Rev. Lett. 108 196802
|
[6] |
Zhu Z Y, Cheng Y C and Schwingenschlogl U 2011 Phys. Rev. B 84 153402
|
[7] |
Yin X, Ye Z, Chenet D A, Ye Y, O'Brien K, Hone J C and Zhang X 2014 Science 344 488
|
[8] |
Li Z and Carbotte J P 2012 Phys. Rev. B 86 205425
|
[9] |
Shan W Y, Lu H Z and Xiao D 2013 Phys. Rev. B 88 125301
|
[10] |
Hong X, Kim J, Shi S F, Zhang Y, Jin C, Sun Y and Wang F 2014 Nat. Nanotech. 9 682
|
[11] |
Lee C H, Lee G H, Van Der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J and Kim P 2014 Nat. Nanotech. 9 676
|
[12] |
Furchi M M, Pospischil A, Libisch F, Burgdorfer J and Mueller T 2014 Nano Lett. 14 4785
|
[13] |
Cheng R, Li D H, Zhou H L, Wang C, Yin A X, Jiang S, Liu Y, Chen Y, Huang Y and Duan X F 2014 Nano Lett. 14 5590
|
[14] |
Lee Y H, Zhang X Q, Zhang W J, Chang M, Lin C, Chang K, Yu Y, Wang J T, Chang C, Li L and Lin T 2012 Adv. Mater. 24 2320
|
[15] |
Najmaei S, Liu Z, Zhou W, Zou X L, Shi G, Lei S D, Yakobson B I, Idrobo J C, Ajayan P M and Lou J 2013 Nat. Mater. 12 754
|
[16] |
Van Der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y, Lee G H, Heinz T F, Reichman D R, Muller D A and Hone J C 2013 Nat. Mater. 12 554
|
[17] |
Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M W and Chhowalla M 2011 Nano Lett. 11 5111
|
[18] |
Mouri S, Miyauchi Y and Matsuda Y 2013 Nano Lett. 13 5944
|
[19] |
Joo P, Jo K, Ahn G, Voiry D, Jeong H Y, Ryu S, Chhowalla M and Kim B S 2014 Nano Lett. 14 6456
|
[20] |
Nan H, Wang Z, Wang W, Liang Z, Lu Y, Chen Q, He D, Tan P, Miao F and Wang X 2014 ACS Nano 8 5738
|
[21] |
Najmaei S, Mlayah A, Arbouet A, Girard C, Léotin J and Lou J 2014 ACS Nano 8 12683
|
[22] |
Butun S, Tongay S and Aydin K 2015 Nano Lett. 15 2700
|
[23] |
Sobhani A, Lauchner A, Najmaei S, Ayala-Orozco C, Wen F, Lou J and Halas N J 2014 Appl. Phys. Lett. 104 031112
|
[24] |
Li M, Zou C L, Ren X F, Xiong X, Cai Y J, Guo G P, Tong L M and Guo G C 2015 Nano Lett. 15 2380
|
[25] |
Wang L L, Zou C L, Ren X F, Liu A P, Lv L, Cai Y J, Sun F W, Guo G C and Guo G P 2011 Appl. Phys. Lett. 99 061103
|
[26] |
Song S H, Yoon J W, Lee G S, Oh C H and Kim P S 2002 Opt. Express 6 76
|
[27] |
Yu X C, Li B B, Wang P, Tong L M, Jiang X F, Li Y, Gong Q H and Xiao Y F 2014 Adv. Mater. 26 7462
|
[28] |
Xiao Y F, Liu Y C, Li B B, Chen Y L, Li Y and Gong Q H 2012 Phys. Rev. A 85 031805
|
[29] |
Cai Y J, Li M, Xiong X, Yu L, Ren X F, Guo G P and Guo G C 2015 Chin. Phys. Lett. 32 107305
|
[30] |
Du L, Wang M and Pan T T 2017 Chin. Phys. B 26 077301
|
[31] |
Wang Z, Dong Z G, Gu Y H, Chang Y H, Zhang L, Li L J, Zhao W J, Eda G, Zhang W J, Grinblat G, Maier S A, Yang J K W, Qiu C W and Wee A T S 2016 Nat. Comm. 7 11283
|
[32] |
Zhang W H, Fang Z Y and Zhu X 2017 Chem. Rev. 117 5095
|
[33] |
Peng Y S, Zheng X L, Tian H W, Cui X Q, Chen H and Zheng W T 2016 Opt. Exp. 70 1751
|
[34] |
Yu Y, Ji Z H, Zu S, Du B W, Kang Y M, Li Z W, Zhou Z K, Shi K B and Fang Z Y 2016 Adv. Funct. Mater. 26 6394
|
[35] |
Kang Y M, Najmaei S, Liu Z, Bao Y J, Wang Y M, Zhu X, Halas N J, Nordlander P, Ajayan P M, Lou J and Fang Z Y 2014 Adv. Mater. 26 6467
|
[36] |
Li B W, Zu S, Zhou J D, Jiang Q, Du B W, Shan H Y, Luo Y, Liu Z, Zhu X and Fang Z Y 2017 ACS Nano 11 9720
|
[37] |
Li Z W, Xiao Y, Gong Y, Wang Z, Kang Y, Zu S, Ajayan P M, Nordlander P and Fang Z Y 2015 ACS Nano 9 10158
|
[38] |
Kang Y M, Gong Y J, Hu Z J, Li Z W, Qiu Z, Zhu X, Ajayan P M and Fang Z Y 2015 Nanoscale 7 4482
|
[39] |
Liu D, Yu L, Xiong X, Yang L, Li Y, Li M, Li H O, Cao G, Xiao M, Xiang B, Min C J, Guo G C, Ren X F and Guo G P 2016 Opt. Exp. 24 27554
|
[40] |
Li Z W, Li Y, Wang X L, Yu Y, Tay B, Liu Z and Fang Z Y 2017 ACS Nano 11 1165
|
[41] |
Tittl A, Yin X, Giessen H, Tian X D, Tian Z Q, Kremers C, Chigrin D N and Liu N 2013 Nano Lett. 13 1816
|
[42] |
Zhan T R, Zhao F Y, Hu X H, Liu X H and Zi J 2012 Phys. Rev. B 86 165416
|
[43] |
Kleemann M E, Chikkaraddy R, Alexeev E M, Kos D, Carnegie C, Deacon W, Pury A C D, Gro åe C, Nijs B D, Mertens J, Tartakovskii A I and Baumberg J J 2017 Nat. Commun. 8 1296
|
[44] |
Knight M W, Sobhani H, Nordlander P and Halas N J 2011 Science 332 702
|
[45] |
Liu Z W, Hou W B, Pavaskar P, Aykol M and Cronin S B 2011 Nano Lett. 11 1111
|
[46] |
Peng P, Liu Y C, Xu D, Cao Q T, Lu G W, Gong Q H and Xiao Y F 2017 Phys. Rev. Lett. 119 233901
|
[47] |
Xiao Y F, Zou C L, Li B B, Li Y, Dong C H, Han Z F and Gong Q H 2010 Phys. Rev. Lett. 105 153902
|
[48] |
Thomann I, Pinaud B A, Chen Z B, Clemens B M, Jaramillo T F and Brongersma M L 2011 Nano Lett. 11 3440
|
[49] |
Christopher P, Xin H L, Marimuthu A and Linic S 2012 Nat. Mater. 11 1044
|
[50] |
Butun S, Tongay S and Aydin K 2015 Nano Lett. 15 2700
|
[51] |
Purcell E M, Torrey H C and Pound R V 1946 Phys. Rev. 69 1
|
[52] |
Bhanu U, Islam M R, Tetard L and Khondaker S I 2014 Sci. Rep. 4 5575
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|