Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 047302    DOI: 10.1088/1674-1056/27/4/047302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Gap plasmon-enhanced photoluminescence of monolayer MoS2 in hybrid nanostructure

Le Yu(余乐)1,2, Di Liu(刘頔)1,2, Xiao-Zhuo Qi(祁晓卓)1,2, Xiao Xiong(熊霄)1,2, Lan-Tian Feng(冯兰天)1,2, Ming Li(李明)1,2, Guo-Ping Guo(郭国平)1,2, Guang-Can Guo(郭光灿)1,2, Xi-Feng Ren(任希锋)1,2
1. Key Laboratory of Quantum Information, Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026, China;
2. Synergetic Innovation Center of Quantum Information & Quantum Physics
Abstract  

Monolayer transition-metal dichalcogenides (TMDs) have attracted a lot of attention for their applications in optics and optoelectronics. Molybdenum disulfide (MoS2), as one of those important materials, has been widely investigated due to its direct band gap and photoluminescence (PL) in visible range. Owing to the fact that the monolayer MoS2 suffers low light absorption and emission, surface plasmon polaritons (SPPs) are used to enhance both the excitation and emission efficiencies. Here, we demonstrate that the PL of MoS2 sandwiched between 200-nm-diameter gold nanoparticle (AuNP) and 150-nm-thick gold film is improved by more than 4 times compared with bare MoS2 sample. This study shows that gap plasmons can possess more optical and optoelectronic applications incorporating with many other emerging two-dimensional materials.

Keywords:  MoS2      surface plasmon polaritons      gap plasmons  
Received:  02 February 2018      Revised:  14 February 2018      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61590932 and 11774333), the Anhui Initiative Project in Quantum Information Technologies, China (Grant No. AHY130300), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB24030600), the National Key Research and Development Program of China (Grant No. 2016YFA0301700), and the Fundamental Research Funds for the Central Universities, China.

Corresponding Authors:  Xi-Feng Ren     E-mail:  renxf@ustc.edu.cn

Cite this article: 

Le Yu(余乐), Di Liu(刘頔), Xiao-Zhuo Qi(祁晓卓), Xiao Xiong(熊霄), Lan-Tian Feng(冯兰天), Ming Li(李明), Guo-Ping Guo(郭国平), Guang-Can Guo(郭光灿), Xi-Feng Ren(任希锋) Gap plasmon-enhanced photoluminescence of monolayer MoS2 in hybrid nanostructure 2018 Chin. Phys. B 27 047302

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V and Firsov A A 2004 Science 306 666
[2] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotech. 7 699
[3] Ezawa M 2012 Phys. Rev. B 86 161407
[4] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[5] Xiao D, Liu G B, Feng W X, Xu X D and Yao W 2012 Phys. Rev. Lett. 108 196802
[6] Zhu Z Y, Cheng Y C and Schwingenschlogl U 2011 Phys. Rev. B 84 153402
[7] Yin X, Ye Z, Chenet D A, Ye Y, O'Brien K, Hone J C and Zhang X 2014 Science 344 488
[8] Li Z and Carbotte J P 2012 Phys. Rev. B 86 205425
[9] Shan W Y, Lu H Z and Xiao D 2013 Phys. Rev. B 88 125301
[10] Hong X, Kim J, Shi S F, Zhang Y, Jin C, Sun Y and Wang F 2014 Nat. Nanotech. 9 682
[11] Lee C H, Lee G H, Van Der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J and Kim P 2014 Nat. Nanotech. 9 676
[12] Furchi M M, Pospischil A, Libisch F, Burgdorfer J and Mueller T 2014 Nano Lett. 14 4785
[13] Cheng R, Li D H, Zhou H L, Wang C, Yin A X, Jiang S, Liu Y, Chen Y, Huang Y and Duan X F 2014 Nano Lett. 14 5590
[14] Lee Y H, Zhang X Q, Zhang W J, Chang M, Lin C, Chang K, Yu Y, Wang J T, Chang C, Li L and Lin T 2012 Adv. Mater. 24 2320
[15] Najmaei S, Liu Z, Zhou W, Zou X L, Shi G, Lei S D, Yakobson B I, Idrobo J C, Ajayan P M and Lou J 2013 Nat. Mater. 12 754
[16] Van Der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y, Lee G H, Heinz T F, Reichman D R, Muller D A and Hone J C 2013 Nat. Mater. 12 554
[17] Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M W and Chhowalla M 2011 Nano Lett. 11 5111
[18] Mouri S, Miyauchi Y and Matsuda Y 2013 Nano Lett. 13 5944
[19] Joo P, Jo K, Ahn G, Voiry D, Jeong H Y, Ryu S, Chhowalla M and Kim B S 2014 Nano Lett. 14 6456
[20] Nan H, Wang Z, Wang W, Liang Z, Lu Y, Chen Q, He D, Tan P, Miao F and Wang X 2014 ACS Nano 8 5738
[21] Najmaei S, Mlayah A, Arbouet A, Girard C, Léotin J and Lou J 2014 ACS Nano 8 12683
[22] Butun S, Tongay S and Aydin K 2015 Nano Lett. 15 2700
[23] Sobhani A, Lauchner A, Najmaei S, Ayala-Orozco C, Wen F, Lou J and Halas N J 2014 Appl. Phys. Lett. 104 031112
[24] Li M, Zou C L, Ren X F, Xiong X, Cai Y J, Guo G P, Tong L M and Guo G C 2015 Nano Lett. 15 2380
[25] Wang L L, Zou C L, Ren X F, Liu A P, Lv L, Cai Y J, Sun F W, Guo G C and Guo G P 2011 Appl. Phys. Lett. 99 061103
[26] Song S H, Yoon J W, Lee G S, Oh C H and Kim P S 2002 Opt. Express 6 76
[27] Yu X C, Li B B, Wang P, Tong L M, Jiang X F, Li Y, Gong Q H and Xiao Y F 2014 Adv. Mater. 26 7462
[28] Xiao Y F, Liu Y C, Li B B, Chen Y L, Li Y and Gong Q H 2012 Phys. Rev. A 85 031805
[29] Cai Y J, Li M, Xiong X, Yu L, Ren X F, Guo G P and Guo G C 2015 Chin. Phys. Lett. 32 107305
[30] Du L, Wang M and Pan T T 2017 Chin. Phys. B 26 077301
[31] Wang Z, Dong Z G, Gu Y H, Chang Y H, Zhang L, Li L J, Zhao W J, Eda G, Zhang W J, Grinblat G, Maier S A, Yang J K W, Qiu C W and Wee A T S 2016 Nat. Comm. 7 11283
[32] Zhang W H, Fang Z Y and Zhu X 2017 Chem. Rev. 117 5095
[33] Peng Y S, Zheng X L, Tian H W, Cui X Q, Chen H and Zheng W T 2016 Opt. Exp. 70 1751
[34] Yu Y, Ji Z H, Zu S, Du B W, Kang Y M, Li Z W, Zhou Z K, Shi K B and Fang Z Y 2016 Adv. Funct. Mater. 26 6394
[35] Kang Y M, Najmaei S, Liu Z, Bao Y J, Wang Y M, Zhu X, Halas N J, Nordlander P, Ajayan P M, Lou J and Fang Z Y 2014 Adv. Mater. 26 6467
[36] Li B W, Zu S, Zhou J D, Jiang Q, Du B W, Shan H Y, Luo Y, Liu Z, Zhu X and Fang Z Y 2017 ACS Nano 11 9720
[37] Li Z W, Xiao Y, Gong Y, Wang Z, Kang Y, Zu S, Ajayan P M, Nordlander P and Fang Z Y 2015 ACS Nano 9 10158
[38] Kang Y M, Gong Y J, Hu Z J, Li Z W, Qiu Z, Zhu X, Ajayan P M and Fang Z Y 2015 Nanoscale 7 4482
[39] Liu D, Yu L, Xiong X, Yang L, Li Y, Li M, Li H O, Cao G, Xiao M, Xiang B, Min C J, Guo G C, Ren X F and Guo G P 2016 Opt. Exp. 24 27554
[40] Li Z W, Li Y, Wang X L, Yu Y, Tay B, Liu Z and Fang Z Y 2017 ACS Nano 11 1165
[41] Tittl A, Yin X, Giessen H, Tian X D, Tian Z Q, Kremers C, Chigrin D N and Liu N 2013 Nano Lett. 13 1816
[42] Zhan T R, Zhao F Y, Hu X H, Liu X H and Zi J 2012 Phys. Rev. B 86 165416
[43] Kleemann M E, Chikkaraddy R, Alexeev E M, Kos D, Carnegie C, Deacon W, Pury A C D, Gro åe C, Nijs B D, Mertens J, Tartakovskii A I and Baumberg J J 2017 Nat. Commun. 8 1296
[44] Knight M W, Sobhani H, Nordlander P and Halas N J 2011 Science 332 702
[45] Liu Z W, Hou W B, Pavaskar P, Aykol M and Cronin S B 2011 Nano Lett. 11 1111
[46] Peng P, Liu Y C, Xu D, Cao Q T, Lu G W, Gong Q H and Xiao Y F 2017 Phys. Rev. Lett. 119 233901
[47] Xiao Y F, Zou C L, Li B B, Li Y, Dong C H, Han Z F and Gong Q H 2010 Phys. Rev. Lett. 105 153902
[48] Thomann I, Pinaud B A, Chen Z B, Clemens B M, Jaramillo T F and Brongersma M L 2011 Nano Lett. 11 3440
[49] Christopher P, Xin H L, Marimuthu A and Linic S 2012 Nat. Mater. 11 1044
[50] Butun S, Tongay S and Aydin K 2015 Nano Lett. 15 2700
[51] Purcell E M, Torrey H C and Pound R V 1946 Phys. Rev. 69 1
[52] Bhanu U, Islam M R, Tetard L and Khondaker S I 2014 Sci. Rep. 4 5575
[1] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[2] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[3] MoS2/Si tunnel diodes based on comprehensive transfer technique
Yi Zhu(朱翊), Hongliang Lv(吕红亮), Yuming Zhang(张玉明), Ziji Jia(贾紫骥), Jiale Sun(孙佳乐), Zhijun Lyu(吕智军), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(1): 018501.
[4] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[5] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[6] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[7] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[8] Anisotropic refraction and valley-spin-dependent anomalous Klein tunneling in a 1T'-MoS2-based p-n junction
Fenghua Qi(戚凤华) and Xingfei Zhou(周兴飞). Chin. Phys. B, 2022, 31(7): 077301.
[9] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[10] Vacuum current-carrying tribological behavior of MoS2-Ti films with different conductivities
Lu-Lu Pei(裴露露), Peng-Fei Ju(鞠鹏飞), Li Ji(吉利), Hong-Xuan Li(李红轩),Xiao-Hong Liu(刘晓红), Hui-Di Zhou(周惠娣), and Jian-Min Chen(陈建敏). Chin. Phys. B, 2022, 31(6): 066201.
[11] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[12] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[13] High-sensitive phototransistor based on vertical HfSe2/MoS2 heterostructure with broad-spectral response
Wen Deng(邓文), Li-Sheng Wang(汪礼胜), Jia-Ning Liu(刘嘉宁), Tao Xiang(相韬), and Feng-Xiang Chen(陈凤翔). Chin. Phys. B, 2022, 31(12): 128502.
[14] Improvement of femtosecond SPPs imaging by two-color laser photoemission electron microscopy
Chun-Lai Fu(付春来), Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Xiao-Wei Song(宋晓伟), Peng Lang(郎鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107103.
[15] Two-color laser PEEM imaging of horizontal and vertical components of femtosecond surface plasmon polaritons
Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Lun Wang(王伦), Peng Lang(郎鹏), Xiao-Wei Song(宋晓伟), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107104.
No Suggested Reading articles found!